
Efficient	Processing	for	Deep	Learning:	
Challenges	and	Opportuni:es	

Contact	Info	
email:	sze@mit.edu	
website:	www.rle.mit.edu/eems	

Vivienne	Sze	
Massachuse@s	Ins:tute	of	Technology	

In	collabora*on	with		
Yu-Hsin	Chen,	Joel	Emer,	Tien-Ju	Yang	

Video	is	the	Biggest	Big	Data		

Need	energy-efficient	pixel	processing!	

Over	70%	of	today’s	Internet	traffic	is	video	
Over	300	hours	of	video	uploaded	to	YouTube	every	minute	

Over	500	million	hours	of	video	surveillance	collected	every	day	

Energy	limited	due	
to	ba:ery	capacity	

Power	limited	due	
to	heat	dissipa?on	

2

Deep	Convolu:onal	Neural	Networks	

Classes FC
Layers

Modern deep CNN: up to 1000 CONV layers

CONV
Layer

CONV
Layer

Low-level
Features

High-level
Features

3

Deep	Convolu:onal	Neural	Networks	

CONV
Layer

CONV
Layer

Low-level
Features

High-level
Features

Classes FC
Layers

1 – 3 layers

4

Deep	Convolu:onal	Neural	Networks	

Classes CONV
Layer

CONV
Layer

FC
Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

5

High-Dimensional	CNN	Convolu:on	

R

R

H

Input Image (Feature Map)

Filter

H

6

R

Filter

High-Dimensional	CNN	Convolu:on	

Input Image (Feature Map)

R

Element-wise
Multiplication

H

H

7

R

Filter

R

High-Dimensional	CNN	Convolu:on	

E

E
Partial Sum (psum)

Accumulation

Input Image (Feature Map) Output Image

Element-wise
Multiplication

H

a pixel

H

8

H
R

Filter

R

High-Dimensional	CNN	Convolu:on	

E

Sliding Window Processing

Input Image (Feature Map)
a pixel

Output Image

H E

9

H

High-Dimensional	CNN	Convolu:on	

R

R

C

Input Image

Output Image
C Filter

Many Input Channels (C)

E

H E

AlexNet:	3	–	192	Channels	(C)		

10

High-Dimensional	CNN	Convolu:on	

E

Output Image Many
Filters (M)

Many
Output Channels (M)

M

…

R

R
1

R

R

C

M

H

Input Image
C

C

H E

AlexNet:	96	–	384	Filters	(M)		

11

High-Dimensional	CNN	Convolu:on	

…

M

…

Many
Input Images (N) Many

Output Images (N)
…

R

R

R

R

C

C

Filters

E

E

H

C

H

H

C

E
1 1

N N

H E

Image	batch	size:	1	–	256	(N)	

12

Large	Sizes	with	Varying	Shapes	

Layer	 Filter	Size	(R)	 #	Filters	(M)	 #	Channels	(C)	 Stride	
1	 11x11	 96	 3	 4	
2	 5x5	 256	 48	 1	
3	 3x3	 384	 256	 1	
4	 3x3	 384	 192	 1	
5	 3x3	 256	 192	 1	

AlexNet1	Convolu:onal	Layer	Configura:ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

1.	[Krizhevsky,	NIPS	2012]	

105M	MACs	 224M	MACs	 150M	MACs	

13

•  LeNet	(1998)	
•  AlexNet	(2012)	
•  OverFeat	(2013)	
•  VGGNet	(2014)	
•  GoogleNet	(2014)	
•  ResNet	(2015)	

Popular	CNNs	

0

2

4

6

8

10

12

14

16

18

2012 2013 2014 2015 Human

A
cc

ur
ac

y
(T

op
 5

 e
rr

or
)

[O. Russakovsky et al., IJCV 2015]

AlexNet	

OverFeat	

GoogLeNet	

ResNet	

Cl
ar
ifa

i	

VGGNet	

ImageNet: Large Scale Visual
Recognition Challenge (ILSVRC)

14

Metrics LeNet-5 AlexNet VGG-16 GoogLeNet
(v1)

ResNet-50

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224
of CONV Layers 2 5 16 21 (depth) 49
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7
of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048
of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1 1, 2 1, 2
of Weights 2.6k 2.3M 14.7M 6.0M 23.5M
of MACs 283k 666M 15.3G 1.43G 3.86G
of FC layers 2 3 3 1 1
of Weights 58k 58.6M 124M 1M 2M
of MACs 58k 58.6M 124M 1M 2M
Total Weights 60k 61M 138M 7M 25.5M
Total MACs 341k 724M 15.5G 1.43G 3.9G

Summary	of	Popular	CNNs	

CONV Layers increasingly important!

15

Training	vs.	Inference	

Training
(determine weights)

Weights
Large Datasets

Inference
(use weights)

16

Challenges

17

• Accuracy	
–  Evaluate	hardware	using	the	
appropriate	DNN	model	and	dataset	

•  Programmability	
–  Support	mulaple	applicaaons		
–  Different	weights	

•  Energy/Power	
–  Energy	per	operaaon	
–  DRAM	Bandwidth	

•  Throughput/Latency		
–  GOPS,	frame	rate,	delay	

•  Cost		
–  Area	(size	of	memory	and	#	of	cores)	

Key	Metrics	

DRAM

Chip	

Computer		
Vision	

Speech		
Recogni:on	

18

[Sze et al., CICC 2017]

ImageNet	MNIST	

Opportunities in
Architecture

19

GPUs	and	CPUs	Targe:ng	Deep	Learning	

Knights Mill: next gen Xeon
Phi “optimized for deep

learning”

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016)

20

Use matrix multiplication libraries on CPUs and GPUs

Accelerate	Matrix	Mul:plica:on	

•  Implementation: Matrix Multiplication (GEMM)

•  CPU: OpenBLAS, Intel MKL, etc
•  GPU: cuBLAS, cuDNN, etc

•  Optimized by tiling to storage hierarchy

21

Map	DNN	to	a	Matrix	Mul:plica:on	

•  Convert to matrix mult. using the Toeplitz Matrix

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

22

1 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

Data is repeated
Goal: Reduced number of operations to increase throughput

• Goal:	Bitwise	same	result,	but	reduce	number	of	
opera:ons	

•  Focuses	mostly	on	compute	

Computa:on	Transforma:ons	23

Analogy:	Gauss’s	Mul:plica:on	Algorithm	

4 multiplications + 3 additions

3 multiplications + 5 additions

24

Reduce number of multiplications, but increase number of additions

• Winograd	[Lavin,	CVPR	2016]		
– Pro:	2.25x	speed	up	for	3x3	filter	
– Con:	Specialized	processing	depending	on	filter	size	

•  Fast	Fourier	Transform	[Mathieu,	ICLR	2014]	

– Pro:	Direct	convoluaon	O(No
2Nf

2)	to	O(No
2log2No)	

– Con:	Increase	storage	requirements	

•  Strassen	[Cong,	ICANN	2014]		
– Pro:	O(N3)	to	(N2.807)	
– Con:	Numerical	stability	
	

Reduce	Opera:ons	in	Matrix	Mul:plica:on	25

cuDNN:	Speed	up	with	Transforma:ons	

Source: Nvidia

26

Specialized Hardware
(Accelerators)

27

Proper:es	We	Can	Leverage	

•  Operaaons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Bojleneck	

28

ALU

Memory Read Memory Write MAC*

* multiply-and-accumulate

filter weight
image pixel
partial sum updated

partial sum

•  Example: AlexNet [NIPS 2012] has 724M MACs
 à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM

Proper:es	We	Can	Leverage	

•  Operaaons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Input	data	reuse	opportuniaes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

Convolu:onal	
Reuse		

(pixels,	weights)	

Filter	 Image	

Image	
Reuse	
(pixels)	

	

2

1

Filters	

Image	

Filter	
Reuse	

(weights)	
	

Filter	

Images	

2

1

29

Highly-Parallel	Compute	Paradigms	30

Temporal Architecture
(SIMD/SIMT)

Register File

Memory Hierarchy

Spatial Architecture
(Dataflow Processing)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Advantages	of	Spa:al	Architecture	31

Temporal Architecture
(SIMD/SIMT)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica:on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control

Reg File 0.5 – 1.0 kB

Data	Movement	is	Expensive	32

DRAM ALU

Buffer ALU

PE ALU

RF ALU

ALU

Data Movement Energy Cost

200×

6×

2×

1×

1× (Reference)

Off-Chip
DRAM ALU = PE

Processing Engine

Accelerator

Global
Buffer

PE

PE PE

ALU

Maximize	data	reuse	at	lower	levels	of	hierarchy	

Weight	Sta:onary	(WS)	

•  Minimize weight read energy consumption
−  maximize convolutional and filter reuse of weights

•  Examples:
 [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]

[Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Pixel

PE
Weight

33

•  Minimize partial sum R/W energy consumption
−  maximize local accumulation

•  Examples:

Output	Sta:onary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015]
[Peemen, ICCD 2013]

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Pixel Weight

PE
Psum

34

•  Use a large global buffer as shared storage
−  Reduce DRAM access energy consumption

•  Examples:

No	Local	Reuse	(NLR)	

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]

PE
 Pixel

Psum

Global Buffer
Weight

35

Row	Sta:onary	Dataflow	

PE 1

Row 1 Row 1

PE 2

Row 2 Row 2

PE 3

Row 3 Row 3

Row 1

= *

PE 4

Row 1 Row 2

PE 5

Row 2 Row 3

PE 6

Row 3 Row 4

Row 2

= *

PE 7

Row 1 Row 3

PE 8

Row 2 Row 4

PE 9

Row 3 Row 5

Row 3

= *

* * *

* * *

* * *

36

Dataflow	Comparison:	CONV	Layers	

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights

pixels

CNN Dataflows

37

[Chen, ISCA 2016]

RS uses 1.4× – 2.5× lower energy than other dataflows

Eyeriss	Deep	CNN	Accelerator	38

Off-Chip DRAM

…

…

…

…
…

…

Decomp

Comp ReLU

Input Image

Output Image

Filter Filt

Img

Psum

Psum

Global
Buffer
SRAM

108KB

64 bits

DCNN Accelerator

14×12 PE Array

Link Clock Core Clock

[Chen	et	al.,	ISSCC	2016]	

Comparison	with	GPU	39

Eyeriss NVIDIA TK1 (Jetson Kit)
Technology 65nm 28nm
Clock Rate 200MHz 852MHz

Multipliers 168 192

On-Chip Storage Buffer: 108KB
Spad: 75.3KB

Shared Mem: 64KB
Reg File: 256KB

Word Bit-Width 16b Fixed 32b Float
Throughput1 34.7 fps 68 fps

Measured Power 278 mW Idle/Active2: 3.7W/10.2W

DRAM Bandwidth 127 MB/s 1120 MB/s 3

1.  AlexNet Convolutional Layers Only
2.  Board Power
3.  Modeled from [Tan, SC11] http://eyeriss.mit.edu

Features:	Energy	vs.	Accuracy		40

0.1

1

10

100

1000

10000

0 20 40 60 80

Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac?on.	Does	
not	include	data,	augmenta?on,	
ensemble	and	classifica?on	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen?al	

Linear	

Video		
Compression	

[Suleiman et al., ISCAS 2017]

Opportunities in Joint
Algorithm Hardware Design

41

• Reduce	size	of	operands	for	storage/compute	
–  Floaang	point	à	Fixed	point	
– Bit-width	reducaon	
– Non-linear	quanazaaon	
	

• Reduce	number	of	opera:ons	for	storage/compute	
– Exploit	Acavaaon	Staasacs	(Compression)	
– Network	Pruning	
– Compact	Network	Architectures	

Approaches	42

Commercial	Products	using	8-bit	Integer	

Nvidia’s Pascal (2016) Google’s TPU (2016)

43

•  Reduce	number	of	bits		
–  Binary	Nets	[Courbariaux,	NIPS	2015]		

•  Reduce	number	of	unique	weights	
–  Ternary	Weight	Nets	[Li,	arXiv	2016]	
–  XNOR-Net	[Rategari,	ECCV	2016]	

•  Non-Linear	Quan:za:on	
–  LogNet	[Lee,	ICASSP	2017]	

Reduced	Precision	in	Research	44

Binary Filters

Log Domain Quantization

Sparsity	in	Feature	Maps	

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

45

Exploit	Sparsity	46

[Chen	et	al.,	ISSCC	2016]	

Method	2:	Compress	data	to	reduce	storage	and	data	movement	

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	Ac
ce
ss	

(M
B)	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM
Access
(MB)

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

== 0 Zero
Buff

 Scratch Pad

Enable

Zero Data Skipping

Register	File	

No	R/W	 No	Switching	

Method	1:	Skip	memory	access	and	computa*on	

45%	energy	savings	

Op:mal	Brain	Damage	

Pruning	–	Make	Weights	Sparse	

[Lecun et al., NIPS 1989]

retraining

47

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune	DNN	based	on	
magnitude	of	weights	

[Han et al., NIPS 2015]

Example: AlexNet
Weight Reduction:

CONV layers 2.7x, FC layers 9.9x
Overall Reduction:

Weights 9x, MACs 3x

Network	Architecture	Design	

5x5 filter Two 3x3 filters

decompose

Apply sequentially

decompose

5x5 filter 5x1 filter

1x5 filter

Apply sequentially
GoogleNet/Inception v3

VGG-16

Build Network with series of Small Filters

separable
filters

48

1x1	Bo@leneck	in	Popular	DNN	models	

ResNet

GoogleNet

compress

expand

compress

49

SqueezeNet

• Accuracy	à	Measured	on	Dataset	

•  Speed	à	Number	of	MACs	

•  Storage	Footprint	à	Number	of	Weights	

•  Energy	à	?	

Key	Metrics	for	Embedded	DNN	50

Energy-Evalua:on	Methodology	51

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Energy estimation tool available at http://eyeriss.mit.edu

[Yang et al., CVPR 2017]

•  Number	of	weights	alone	is	not	a	good	metric	for	energy	

•  All	data	types	should	be	considered		
	

Key	Observa:ons	52

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang et al., CVPR 2017]

[Yang et al., CVPR 2017]

53

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump:on	

Original	DNN	

Deeper	CNNs	with	fewer	weights	do	not	necessarily	consume	
less	energy	than	shallower	CNNs	with	more	weights	

Energy	Consump:on	of	Exis:ng	DNNs	

54

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump:on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

Reduce	number	of	weights	by	removing	small	magnitude	weights	

Magnitude-based	Weight	Pruning	

[Yang et al., CVPR 2017]

55

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump:on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

Remove	weights	from	layers	in	order	of	highest	to	lowest	energy	
3.7x	reduc:on	in	AlexNet	/	1.6x	reduc:on	in	GoogLeNet	

Energy-Aware	Pruning	

1.74x

•  Energy-Efficient	Approaches		
– Minimize	data	movement		
– Balance	flexibility	and	energy-efficiency	
– Exploit	sparsity	with	joint	algorithm	and	hardware	design	

•  Joint	algorithm	and	hardware	design	can	deliver	
addiaonal	energy	savings	(directly	target	energy)	

•  Linear	increase	in	accuracy	requires	exponen:al	
increase	in	energy	

	

Summary	56

Acknowledgements:	This	work	is	funded	by	the	DARPA	YFA	grant,	MIT	Center	for	
Integrated	Circuits	&	Systems,	and	girs	from	Intel,	Nvidia	and	Google.	

References	

More	info	about	Eyeriss	and	Tutorial	on	DNN	Architectures	
hjp://eyeriss.mit.edu		

For	updates	
http://mailman.mit.edu/mailman/listinfo/eems-news

Overview	Paper	
V.	Sze,	Y.-H.	Chen,	T-J.	Yang,	J.	Emer,	“Efficient	Processing	of	
Deep	Neural	Networks:	A	Tutorial	and	Survey”,	arXiv,	2017	
hjps://arxiv.org/pdf/1703.09039.pdf		

57

MIT	Professional	Educaaon	Course	on		
“Designing	Efficient	Deep	Learning	Systems”		
March	26	–	27,	2018	in	Mountain	View,	CA	
hjp://professional-educaaon.mit.edu/deeplearning		

© 2016 Embedded Vision Alliance 58

The Embedded Vision Alliance (www.Embedded-Vision.com) is a partnership
of ~70 leading embedded vision technology
and services suppliers

Mission: Inspire and empower product creators to incorporate visual
intelligence into their products

The Alliance provides low-cost, high-quality technical educational resources
for product developers

Register for updates at www.Embedded-Vision.com

The Alliance enables vision technology providers to grow their businesses
through leads, ecosystem partnerships, and insights

For membership, email us: membership@Embedded-Vision.com

Empowering Product Creators to
Harness Embedded Vision

© 2016 Embedded Vision Alliance 59

The only industry event focused on enabling
product creators to create “machines that see”

•  “Awesome! I was very inspired!”

•  “Fantastic. Learned a lot and met great people.”

•  “Wonderful speakers and informative exhibits!”

Embedded Vision Summit 2018 highlights:
•  Inspiring keynotes by leading innovators

•  High-quality, practical technical, business and
product talks

•  Exciting demos of the latest apps and
technologies

Visit www.EmbeddedVisionSummit.com to sign up for
updates

Join us at the Embedded Vision Summit
May 22-24, 2018—Santa Clara, California

