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Video	is	the	Biggest	Big	Data		

Need	energy-efficient	pixel	processing!	

Over	70%	of	today’s	Internet	traffic	is	video	
Over	300	hours	of	video	uploaded	to	YouTube	every	minute	

Over	500	million	hours	of	video	surveillance	collected	every	day	

Energy	limited	due	
to	ba:ery	capacity	

Power	limited	due	
to	heat	dissipa?on	
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Deep	Convolu:onal	Neural	Networks	

Classes FC 
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Modern deep CNN: up to 1000 CONV layers 
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Deep	Convolu:onal	Neural	Networks	
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1 – 3 layers 
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Deep	Convolu:onal	Neural	Networks	

Classes CONV 
Layer 

CONV 
Layer 

FC 
Layers 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 
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High-Dimensional	CNN	Convolu:on	
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High-Dimensional	CNN	Convolu:on	
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High-Dimensional	CNN	Convolu:on	
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H 
R 
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High-Dimensional	CNN	Convolu:on	
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Sliding Window Processing 

Input Image (Feature Map) 
a pixel 

Output Image 
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High-Dimensional	CNN	Convolu:on	
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Many Input Channels (C) 
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AlexNet:	3	–	192	Channels	(C)		
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High-Dimensional	CNN	Convolu:on	
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AlexNet:	96	–	384	Filters	(M)		
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High-Dimensional	CNN	Convolu:on	
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Image	batch	size:	1	–	256	(N)	
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Large	Sizes	with	Varying	Shapes	

Layer	 Filter	Size	(R)	 #	Filters	(M)	 #	Channels	(C)	 Stride	
1	 11x11	 96	 3	 4	
2	 5x5	 256	 48	 1	
3	 3x3	 384	 256	 1	
4	 3x3	 384	 192	 1	
5	 3x3	 256	 192	 1	

AlexNet1	Convolu:onal	Layer	Configura:ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

1.	[Krizhevsky,	NIPS	2012]	

105M	MACs	 224M	MACs	 150M	MACs	
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•  LeNet	(1998)	
•  AlexNet	(2012)	
•  OverFeat	(2013)	
•  VGGNet	(2014)	
•  GoogleNet	(2014)	
•  ResNet	(2015)	

Popular	CNNs	
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[O. Russakovsky et al., IJCV 2015] 

AlexNet	
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GoogLeNet	
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VGGNet	

ImageNet: Large Scale Visual 
Recognition Challenge (ILSVRC) 
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Metrics LeNet-5 AlexNet VGG-16 GoogLeNet  
(v1) 

ResNet-50 

Top-5 error n/a 16.4 7.4 6.7 5.3 

Input Size 28x28 227x227 224x224 224x224 224x224 
# of CONV Layers  2 5 16 21 (depth) 49 
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7 
# of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048 
# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048 
Stride 1 1, 4 1 1, 2 1, 2 
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 
# of MACs 283k 666M 15.3G 1.43G 3.86G 
# of FC layers 2 3 3 1 1 
# of Weights 58k 58.6M 124M 1M 2M 
# of MACs 58k 58.6M 124M 1M 2M 
Total Weights 60k 61M 138M 7M 25.5M 
Total MACs 341k 724M 15.5G 1.43G 3.9G 

Summary	of	Popular	CNNs	

CONV Layers increasingly important! 
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Training	vs.	Inference	

Training 
(determine weights) 

Weights 
Large Datasets 

Inference 
(use weights) 
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Challenges 
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• Accuracy	
–  Evaluate	hardware	using	the	
appropriate	DNN	model	and	dataset	

•  Programmability	
–  Support	mulaple	applicaaons		
–  Different	weights	

•  Energy/Power	
–  Energy	per	operaaon	
–  DRAM	Bandwidth	

•  Throughput/Latency		
–  GOPS,	frame	rate,	delay	

•  Cost		
–  Area	(size	of	memory	and	#	of	cores)	

Key	Metrics	

DRAM 

Chip	

Computer		
Vision	

Speech		
Recogni:on	
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[Sze et al., CICC 2017] 

ImageNet	MNIST	



Opportunities in 
Architecture 
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GPUs	and	CPUs	Targe:ng	Deep	Learning	

Knights Mill: next gen Xeon 
Phi “optimized for deep 

learning”  

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016) 
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Use matrix multiplication libraries on CPUs and GPUs 



Accelerate	Matrix	Mul:plica:on	

•  Implementation: Matrix Multiplication (GEMM) 
 

•  CPU: OpenBLAS, Intel MKL, etc 
•  GPU: cuBLAS, cuDNN, etc 

•  Optimized by tiling to storage hierarchy 
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Map	DNN	to	a	Matrix	Mul:plica:on	

•  Convert to matrix mult. using the Toeplitz Matrix 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 
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1 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

Data is repeated 
Goal: Reduced number of operations to increase throughput 



• Goal:	Bitwise	same	result,	but	reduce	number	of	
opera:ons	

•  Focuses	mostly	on	compute	

Computa:on	Transforma:ons	23 



Analogy:	Gauss’s	Mul:plica:on	Algorithm	

4 multiplications + 3 additions 

3 multiplications + 5 additions 
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Reduce number of multiplications, but increase number of additions 



• Winograd	[Lavin,	CVPR	2016]		
– Pro:	2.25x	speed	up	for	3x3	filter	
– Con:	Specialized	processing	depending	on	filter	size	

•  Fast	Fourier	Transform	[Mathieu,	ICLR	2014]	

– Pro:	Direct	convoluaon	O(No
2Nf

2)	to	O(No
2log2No)	

– Con:	Increase	storage	requirements	

•  Strassen	[Cong,	ICANN	2014]		
– Pro:	O(N3)	to	(N2.807)	
– Con:	Numerical	stability	
	

Reduce	Opera:ons	in	Matrix	Mul:plica:on	25 



cuDNN:	Speed	up	with	Transforma:ons	

Source: Nvidia  
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Specialized Hardware 
(Accelerators) 
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Proper:es	We	Can	Leverage	

•  Operaaons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Bojleneck	
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ALU 
  

  

Memory Read Memory Write MAC* 

* multiply-and-accumulate 

filter weight 
image pixel 
partial sum updated 

partial sum 

•  Example:  AlexNet [NIPS 2012]  has 724M MACs  
  à 2896M DRAM accesses required 

Worst Case: all memory R/W are DRAM accesses 

200x 1x 

  
  

DRAM DRAM 



Proper:es	We	Can	Leverage	

•  Operaaons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Input	data	reuse	opportuniaes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

Convolu:onal	
Reuse		

(pixels,	weights)	

Filter	 Image	

Image	
Reuse	
(pixels)	
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Highly-Parallel	Compute	Paradigms	30 

Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

Spatial Architecture 
(Dataflow Processing) 
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Advantages	of	Spa:al	Architecture	31 

Temporal Architecture 
(SIMD/SIMT) 
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Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 
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Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica:on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control 

Reg File 0.5 – 1.0 kB 

  

  



Data	Movement	is	Expensive	32 

DRAM ALU 

Buffer ALU 

PE ALU 

RF ALU 

ALU 

Data Movement Energy Cost 

200× 

6× 

2× 

1× 

1× (Reference) 

Off-Chip 
DRAM ALU = PE 

Processing Engine 

Accelerator 

Global
Buffer 

PE 

PE PE 

ALU 

Maximize	data	reuse	at	lower	levels	of	hierarchy	



Weight	Sta:onary	(WS)	

•  Minimize weight read energy consumption 
−  maximize convolutional and filter reuse of weights 

•  Examples:  
  [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] 

[Park, ISSCC 2015] [Origami, GLSVLSI 2015] 

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Pixel 

PE 
Weight 
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•  Minimize partial sum R/W energy consumption 
−  maximize local accumulation 

•  Examples:  
  

Output	Sta:onary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015] 
[Peemen, ICCD 2013] 

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Pixel Weight 

PE 
Psum 
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•  Use a large global buffer as shared storage 
−  Reduce DRAM access energy consumption 

•  Examples:  
  

No	Local	Reuse	(NLR)	

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] 
[Zhang, FPGA 2015] 

PE 
        Pixel 

Psum 

Global Buffer 
Weight 
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Row	Sta:onary	Dataflow	

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 
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= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 
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Dataflow	Comparison:	CONV	Layers	
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[Chen, ISCA 2016] 

RS uses 1.4× – 2.5× lower energy than other dataflows 



Eyeriss	Deep	CNN	Accelerator	38 
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Link Clock  Core Clock  

[Chen	et	al.,	ISSCC	2016]	



Comparison	with	GPU	39 

Eyeriss NVIDIA TK1 (Jetson Kit) 
Technology 65nm 28nm 
Clock Rate 200MHz 852MHz 

# Multipliers 168 192 

On-Chip Storage Buffer: 108KB 
Spad: 75.3KB 

Shared Mem: 64KB 
Reg File: 256KB 

Word Bit-Width 16b Fixed 32b Float 
Throughput1 34.7 fps 68 fps 

Measured Power 278 mW Idle/Active2: 3.7W/10.2W 

DRAM Bandwidth 127 MB/s 1120 MB/s 3 

1.  AlexNet Convolutional Layers Only 
2.  Board Power 
3.  Modeled from [Tan, SC11] http://eyeriss.mit.edu  



Features:	Energy	vs.	Accuracy		40 
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Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac?on.	Does	
not	include	data,	augmenta?on,	
ensemble	and	classifica?on	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen?al	

Linear	

Video		
Compression	

[Suleiman et al., ISCAS 2017] 



Opportunities in Joint 
Algorithm Hardware Design 
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• Reduce	size	of	operands	for	storage/compute	
–  Floaang	point	à	Fixed	point	
– Bit-width	reducaon	
– Non-linear	quanazaaon	
	

• Reduce	number	of	opera:ons	for	storage/compute	
– Exploit	Acavaaon	Staasacs	(Compression)	
– Network	Pruning	
– Compact	Network	Architectures	

Approaches	42 



Commercial	Products	using	8-bit	Integer	

Nvidia’s Pascal (2016) Google’s TPU (2016) 
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•  Reduce	number	of	bits		
–  Binary	Nets	[Courbariaux,	NIPS	2015]		

•  Reduce	number	of	unique	weights	
–  Ternary	Weight	Nets	[Li,	arXiv	2016]	
–  XNOR-Net	[Rategari,	ECCV	2016]	

•  Non-Linear	Quan:za:on	
–  LogNet	[Lee,	ICASSP	2017]	

Reduced	Precision	in	Research	44 

Binary Filters 

Log Domain Quantization 



Sparsity	in	Feature	Maps	
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Exploit	Sparsity	46 

[Chen	et	al.,	ISSCC	2016]	

Method	2:	Compress	data	to	reduce	storage	and	data	movement	
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45%	energy	savings	



Op:mal	Brain	Damage	

Pruning	–	Make	Weights	Sparse	

[Lecun et al., NIPS 1989] 

retraining 

47 
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Prune	DNN	based	on	
magnitude	of	weights	

[Han et al., NIPS 2015] 

Example: AlexNet 
Weight Reduction:  

CONV layers 2.7x, FC layers 9.9x 
Overall Reduction:  

Weights 9x, MACs 3x 



Network	Architecture	Design	

5x5 filter Two 3x3 filters 

decompose 

Apply sequentially 

decompose 

5x5 filter 5x1 filter 

1x5 filter 

Apply sequentially 
GoogleNet/Inception v3 

VGG-16 

Build Network with series of Small Filters 

separable  
filters 
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1x1	Bo@leneck	in	Popular	DNN	models	

ResNet 

GoogleNet 

compress 

expand 

compress 
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SqueezeNet 



• Accuracy	à	Measured	on	Dataset	

•  Speed	à	Number	of	MACs	

•  Storage	Footprint	à	Number	of	Weights	

•  Energy	à	?	

Key	Metrics	for	Embedded	DNN	50 



Energy-Evalua:on	Methodology	51 

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

CNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

Energy estimation tool available at http://eyeriss.mit.edu    

[Yang et al., CVPR 2017] 



•  Number	of	weights	alone	is	not	a	good	metric	for	energy	

•  All	data	types	should	be	considered		
	

Key	Observa:ons	52 

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang et al., CVPR 2017] 



[Yang et al., CVPR 2017] 
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AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	
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Normalized	Energy	Consump:on	

Original	DNN	

Deeper	CNNs	with	fewer	weights	do	not	necessarily	consume	
less	energy	than	shallower	CNNs	with	more	weights	

Energy	Consump:on	of	Exis:ng	DNNs	
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AlexNet	 SqueezeNet	
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Normalized	Energy	Consump:on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

Reduce	number	of	weights	by	removing	small	magnitude	weights	

Magnitude-based	Weight	Pruning	



[Yang et al., CVPR 2017] 
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AlexNet	 SqueezeNet	
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Normalized	Energy	Consump:on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

Remove	weights	from	layers	in	order	of	highest	to	lowest	energy	
3.7x	reduc:on	in	AlexNet	/	1.6x	reduc:on	in	GoogLeNet	

Energy-Aware	Pruning	

1.74x 



•  Energy-Efficient	Approaches		
– Minimize	data	movement		
– Balance	flexibility	and	energy-efficiency	
– Exploit	sparsity	with	joint	algorithm	and	hardware	design	

•  Joint	algorithm	and	hardware	design	can	deliver	
addiaonal	energy	savings	(directly	target	energy)	

•  Linear	increase	in	accuracy	requires	exponen:al	
increase	in	energy	

	

Summary	56 
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The Embedded Vision Alliance (www.Embedded-Vision.com) is a partnership 
of ~70 leading embedded vision technology  
and services suppliers 

Mission: Inspire and empower product creators to incorporate visual 
intelligence into their products 

The Alliance provides low-cost, high-quality technical educational resources 
for product developers 

Register for updates at www.Embedded-Vision.com 

The Alliance enables vision technology providers to grow their businesses 
through leads, ecosystem partnerships, and insights 

For membership, email us: membership@Embedded-Vision.com 

 

Empowering Product Creators to  
Harness Embedded Vision 
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The only industry event focused on enabling  
product creators to create “machines that see” 

•  “Awesome!  I was very inspired!”  

•  “Fantastic. Learned a lot and met great people.” 

•  “Wonderful speakers and informative exhibits!” 

Embedded Vision Summit 2018 highlights: 
•  Inspiring keynotes by leading innovators 

•  High-quality, practical technical, business and 
product talks 

•  Exciting demos of the latest apps and 
technologies 

Visit www.EmbeddedVisionSummit.com to sign up for 
updates 

Join us at the Embedded Vision Summit 
May 22-24, 2018—Santa Clara, California 


