

Caffe to Zynq: State-of-the-Art Machine Learning Inference Performance in Less Than 5 Watts

Vinod Kathail, Distinguished Engineer May 24, 2017 MACHINE LEARNING I COMPUTER VISION I SENSOR FUSION I CONNECTIVITY

Agenda

- Why Zynq SoCs for Deep Learning Inference
- Caffe to Zynq SoC in Seconds
- A Full System Example

Diverse Applications with Diverse Design Targets

Zynq Offers the Most Efficient Deep Learning Inference

Zynq SoCs Offer Superior Throughput, Latency

Gw	4/5			Xilinx ZU9	Xilinx ZU5	eGPU*
6 X	1/5	GoogLeNet	Images/s	370.0	155.0	70
Images/sec/watt	Latency (ms)	@ batch = 1	Power (W)	7.0	4.5	7.9
			Images/s/watt	53.0	34.5	8.9
Machine	Real Time					
Learning	Applications			Xilinx ZU9	Xilinx ZU5	eGPU*
Inference	Latency	GoogLeNet @ batch = 1	Images/s	370.0	155.0	70
	Latonoy		Latency (ms)	2.7	6.4	14.2
R				Xilinx ZU9	Xilinx ZU5	eGPU*
a de la	@ batch = 8	GoogLeNet @ batch = 8	Images/s	370.0	155.0	163
20			Latency (ms)	2.7	6.4	49.0
\smile						$\overline{}$
Xilinx Benchmark	Xilinx Benchmark				For large CPU/GPU/D increases s	SPs latency

The Divergence of Training and Inference

Training: Process for machine to "learn" and optimize model from data

Inference: Using trained models to predict/estimate outcomes from new observations in efficient deployments

for maximum efficiency						
Top-5 Accuracy	FP-32	FIXED-16 (INT16)	FIXED-8 (INT8)	Difference vs FP32		
VGG-16	86.6%	86.6%	86.4%	(0.2%)		
GoogLeNet	88.6%	88.5%	85.7%	(2.9%)		
SqueezeNet	81.4%	81.4%	80.3%	(1.1%)		

a a manuel o bit and balance

https://arxiv.org/pdf/1510.00149v5.pdf

© Copyright 2017 Xilinx

Inference Precisions Moving to Lower and Variable Precision

Future Proof Architecture for Any Precisions

BNN: Unparalleled Performance

> Reducing precision from 8b to 1b shrinks LUT cost by 40x

> Potential to scale CNN performance to above 23TOPS (ZU9)

| 1b |
|----|----|----|----|----|----|----|----|
| 1b |

Assuming 300 MHz with 90%/70% DSP/LUT utilizations

Resource consumption assumption: 2.5 LUTs/op (INT1), 16 LUTs/op (INT4), 0.25 DSP/op (INT8)

TX2

2.7

ZU9

0.3 Q3

BNN: Unparalleled Performance

> Reducing precision from 8b to 1b shrinks LUT cost by 40x

> Potential to scale CNN performance to above 23TOPS (ZU9)

| 1b |
|----|----|----|----|----|----|----|----|
| 1b |

Assuming 300 MHz with 90%/70% DSP/LUT utilizations

Resource consumption assumption: 2.5 LUTs/op (INT1), 16 LUTs/op (INT4), 0.25 DSP/op (INT8)

TX2

Q3

23 ZU9

1b

BNN: Unparalleled Performance

> Reducing precision from 8b to 1b shrinks LUT cost by 40x

> Potential to scale CNN performance to above 23TOPS (ZU9)

| 1b |
|----|----|----|----|----|----|----|----|
| 1b |

Resource consumption assumption: 2.5 LUTs/op (INT1), 16 LUTs/op (INT4), 0.25 DSP/op (INT8)_

10W power assumption on ZU9

© Copyright 2017 Xilinx

Embedded

8bits to 1bit: What is the Challenge?

>Small degradation in accuracy but fast improving

Low Latency Inference by Layer to Layer Dataflow On Chip

Nvidia TX1 spec: http://wccftech.com/nvidia-tegra-x1-super-chip-announced-ces-2015-features-maxwell-core-architecture-256-cuda-cores/

© Copyright 2017 Xilinx

© Copyright 2017 Xilinx

xFdnn: Direct Deep Learning Inference from Caffe

Compiles only ARM software code in minutes. No hardware compilation.

© Copyright 2017 Xilinx

Caffe Prototxt to Zynq

32 Bit Training to 8 Bit Inference

> Approach 1: Quick evaluation

Deep Learning Design Examples

		May 2017	Roadmap
GoogLeNet	Images/s	114	370
@ batch = 1	Power (W)	6.0	7.0
3.2 Gops/img	Images/s/watt	19.0	52.9
		May 2017	Roadmap
SSD	Images/s	May 2017 6.3	Roadmap
SSD @ batch = 1 62.4 Gops/img	Images/s Power (W)		Roadmap

		May 2017	Roadmap
FCN-AlexNet @ batch = 1	Images/s	7.0	
	Power (W)	6.0	
42.0 Gops/img	Images/s/watt	1.2	

Deep Learning IP Export Flow

SDSoC Generated Platform DMA AXI-S

- > Export DNN IP and ARM scheduler to integrate into real system
- > Compile-time configuration of DNN IP (e.g. DSP, BRAM, buffer size ...)

© Copyright 2017 Xilinx

Building a Full Embedded Vision System

© Copyright 2017 Xilinx

Building a Full Embedded Vision System

© Copyright 2017 Xilinx

Putting It All Together: CV and CNN with Multiple Sensors

€ XILINX > ALL PROGRAMMABLE...

Summary

- Zynq SoCs offer superior performance and lower latency compared to other SoC offerings
- reVISION stack provides seamless inference of custom deep learning networks from Caffe to Zynq SoCs
- Visit Xilinx.com/reVISION for more information

Empowering Product Creators to Harness Embedded Vision

The Embedded Vision Alliance (<u>www.Embedded-Vision.com</u>) is a partnership of 60+ leading embedded vision technology and services suppliers

Mission: Inspire and empower product creators to incorporate visual intelligence into their products

The Alliance provides low-cost, high-quality technical educational resources for product developers

Register for updates at <u>www.Embedded-Vision.com</u>

The Alliance enables vision technology providers to grow their businesses through leads, ecosystem partnerships, and insights

For membership, email us: membership@Embedded-Vision.com

24

For more information and resources visit www.xilinx.com/reVISION

© Copyright 2017 Xilinx

