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COMPUTATIONAL IMAGING AND VISUAL AWARENESS FOR MOBILE, WEARABLE, AND

EMBEDDED APPLICATIONS. THE VISION PROCESSING UNIT INCORPORATES PARALLELISM,

INSTRUCTION SET ARCHITECTURE, AND MICROARCHITECTURAL FEATURES TO PROVIDE

HIGHLY SUSTAINABLE PERFORMANCE EFFICIENCY ACROSS A RANGE OF COMPUTATIONAL

IMAGING AND COMPUTER VISION APPLICATIONS, INCLUDING THOSE WITH LOW LATENCY

REQUIREMENTS ON THE ORDER OF MILLISECONDS.

e o o o o o« Computer vision is beginning to
transition from the laboratory to the real
world in a host of applications that require a
new approach to supporting the associated
power, weight, and space constraints. Cur-
rent computational platforms and program-
ming paradigms derive from PC-based im-
plementations of computer vision algorithms
using conventional CPUs, GPUs, and high-
bandwidth  DRAMs using programming
environments like OpenCV and Matlab.
Although its convenient for prototyping
new algorithms, this approach of building a
reference implementation on a PC has no
direct path to implementation in applica-
tions such as mobile phones, tablets, wear-
able devices, drones, and robots, where cost,
power, and thermal dissipation are key con-
cerns. Work has begun in earnest on transi-
tioning such applications from the lab to
embedded applications using conventional
mobile phone application processors. How-
ever, such processors still present issues to
the application developer; specifically, the
hard real-time requirements imposed by
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managing low-latency computer vision are
very difficult to satisfy on even a capable
platform running an operating system such
as Android which has not been expressly
designed for low latency. Additionally, satis-
fying the computational requirements of
computer vision applications requires almost
all of the computational resources on a
typical application processor, including a
multicore processor, digital signal processor
(DSP), hardware accelerators, and GPU,
leaving very little over to run virtual reality
workloads involving the GPU. Marshalling
these diverse resources is possible, but it puts
a major strain on both the programmer and
the application processor fabric, meaning
that corners must be cut in terms of quality
while still straining to keep the power below
10 W. Dissipating 10 W in a drone might
not be a thermal issue, but it leaves less
power available for flying, whereas in a
mobile phone 3 to 4 W can be dissipated on
average before the phone becomes literally
too hot to handle. Clearly, across all of the
possible applications a better solution is
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required to evolve to truly capable computer
vision systems with intelligent local decision
making for autonomous robots and drones as
well as truly immersive virtual reality experi-
ences. The vision processing unit (VPU) solu-
tion outlined in our Hot Chips presentation'
and expanded upon here uses a combination
of low-power very long instruction word
(VLIW) processors with vector and SIMD
operations capable of very high parallelism in
a clock cycle, allied with hardware accelera-
tion for key image processing and computer
vision kernels, backed by a very high band-
width on-chip multicore memory subsystem.
The Myriad2 VPU aims to provide an order
of magnitude higher performance efficiency,
allowing high-performance computer vision
systems with very low latency to be built
while dissipating less than 1 W.

Always-on computer vision

The possibility of computationally fusing
images has existed in the minds of scientists
like Lippmann® since the early 1900s, yet it
has had to wait for Moore’s law to catch up
with the enormous computational and power
efficiency requirements to be realized, espe-
ciall, in mobile devices. Computational
imaging and visual awareness applications are
shifting the imaging paradigm in mobile
devices from taking pictures (and video) to
making them, replacing complex optics with
simplified lens assemblies and multiple aper-
tures; combining images captured by hetero-
geneous sensors including RGB (red, green,
blue), infrared (IR), and depth; and extract-
ing scene metadata from still images and
video streams. This revolution in image and
video capture is enabling a broad range of
new application areas and use cases that were
previously limited to desktops and worksta-
tions rather than battery-powered mobile
devices, including mobile handsets, tablets,
wearables, and personal robotics. These devi-
ces support a broad range of computer vision
use cases including muldaperture (array)
cameras, high dynamic range photography
and video, multispectral imaging (for exam-
ple, IR plus visible spectrum and depth sen-
sors working in concert), gesture or facial
recognition and analytics, virtual reality gam-
ing, visual search, simultaneous localization
and mapping for robotics, and many others.

Always-on computer vision has the poten-
tial to greatly enhance user experiences; how-
ever, these applications are in a constant state
of flux, precluding the use of completely
fixed-function hardware because the algo-
rithms are subject to change. The current
crop of heterogeneous platforms, such as the
mobile phone application processors shown
in Figure 1, are often used to prototype
algorithms and appear limited to VGA 30
frames-per-second (fps) resolution and 6 to
8 W power dissipation (http://elinux.org/Jetson
/Computer_Vision_Performance). Despite the
impressive computational resources available
in current application processors, implement-
ing even relatively simple pipelines involves a
high level of complexity in marshalling heter-
ogeneous resources. A typical application pro-
cessor contains multiple ARM processors with
NEON SIMD extensions and other DSPs
and GPUgs, as shown in Figure 1, all of which
must be coordinated and must allow collabo-
rative access to data structures in memory
through shared access or copied data. Indeed,
the latency of GPU access can rule out its
usage for some applications, such as low-
latency virtual reality gaming. In such archi-
tectures, the power overhead of explicitly
copying blocks of data (memcopy) can be on
the order of 1 W, and the latency in moving
frames to and from the GPU subsystem can
be on the order of 5 to 10 ms with target
frame rates that can be in excess of 60 fps.

A typical example of this new breed of
computational imaging devices and applica-
tions is Google’s Project Tango (www.google
.com/atap/projecttango), which uses two
Movidius Myriad 1 computational vision
processors.” Indeed, the next generation
of computational vision requirements for
array cameras, complex vision pipelines,
and image signal processing pipelines for
new sensor types such as RGB near-infra-
red, RGBC (red, green, blue, clear), and
sensor fusion for heterogeneous sensors
in devices such as Project Tango will
demand exceptional levels of processing
backed by high memory bandwidths for
sustainable performance within a global
1-W power envelope to enable always-on
user experiences (see Figure 2).

In this context, Moore’s law (Dennard
planar 2D scaling) is slowing.* Long before
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Figure 1. The architecture of a typical application processor contains multiple subsystems of dedicated ISP hardware, digital
signal processors (DSPs), multicore processors, and a GPU subsystem that usually has its own private memory spaces
between which data must be moved under program control or direct memory access hardware.
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we reach the purported 5-nm limit around
2020, the already high wafer prices will rule
out custom silicon solutions for all but the
highest-volume applications; this means that
solutions will have to be highly program-
mable to be economically viable. Horowitz
identifies power efficiency as a major issue,’
and wirelessly transmitting data for remote
computation can cost up to a million times
more energy per operation compared to
processing locally in a device. Coupled with
this, the power required for cloud-based
video applications scales up to 1,000 times
worse than the power consumed by local in-
device computation,® meaning that large
amounts of new infrastructure would have to
be built if computation is not pushed out to
the network edge and ideally right beside the
image sensor. Another reason for pushing
processing and even limited decision making
to the network edge in applications such as
virtual or augmented reality, autonomous
vehicles, and robots is that datacenters have
major latency issues. Privacy is clearly a major
issue if video or still images are being

uploaded to the cloud for processing, and,
again, processing at the network edge and
exchanging metadata can help mitigate pri-
vacy concerns.

The industry has an opportunity to dis-
tribute computation and build systems that
can think locally and act globally by prepro-
cessing data within personal devices using
low-power processors. In this model, data is
processed as close as possible to the sensor, in
the same way as our human brains, eyes, and
ears are located in close proximity. Only
metadata rather than video is streamed to the
cloud, resolving the power-efficiency, latency,
and security issues and requiring radically less
expensive infrastructure. The key challenge,
of course, is programming such systems in a
highly portable and performance- and power-
efficient way.

Vision processor design challenges

While clearly interesting from a research
and commercial point of view, computational
imaging presents a series of fundamental
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Figure 2. The requirements of always-on computer vision applications extend to all parts of
the image and video-processing chain, from novel and heterogeneous sensors to array
cameras to dedicated image and video processing acceleration to vector and SMID
processors and high-level APIs that let programmers extract performance from the

underlying hardware and firmware.

processing challenges: extreme computational
complexity (hundreds to thousands of Gflops),
a requirement for sustained performance, and
high sensitivity to latency. Although these con-
cerns are all valid, computational imaging has
not been a reality in mobile devices unil
recently, primarily because of two power con-
sumption issues: the heat dissipation potential
in small form factor mobile phones, and the
energy density of available battery technolo-
gies. Current mobile processing architectures
(such as CPUs and GPUs) cant deal efficiently
with computational imaging and computer
vision workloads under these constraints, and
the future does not bode well as Moore’s law is
slowing down, causing the power and per-
formance benefits in the transition to the next
node to decrease. In our opinion, the next dec-
ade will mark the era of special-purpose pro-
cessors focused on decreasing the energy per
operation in a new way.

The general design principles followed in
the first-generation Myriad 1 design and
extended in Myriad 2 are based on Agarwal’s

observation that beyond a certain frequency
limit for any particular design and target
process technology, the designer starts to pay
quadratically in power for linear increases in
operating frequency. Thus, increased parallel-
ism is preferred in terms of maximizing
throughput per milliwatt per megahertz. The
objective in the Myriad 2 design in 28-nm
process technology was to achieve 20 to 30x
the processing per watt of that achieved in
65 nm by the previous generation Myriad 1.
A 5x performance increase compared to
Myriad 1 was achieved by increasing the
number of Streaming Hybrid Architecture
Vector Engine (SHAVE) vector processors
from 8 to 12 and increasing the clock rate
from 180 to 600 MHz. The remaining 15 to
25x performance increase was achieved by
including 20 hardware accelerators in
Mpyriad, two of which can output one fully
computed output pixel per cycle. The hard-
ware accelerator rationale fits with the
Moore’s law trend below 28 nm, because
memory access is expensive in terms of
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power, and memory is now scaling at 20 to
30 percent (down from 50) versus 50 percent
for logic below the 28-nm node.” Generally,
this means that the chip architect must look
at trading arithmetic operations per memory
access for lower memory storage and band-
width requirements, which also has the bene-
fit of globally lower power.®

Myriad 2 system architecture

As Figure 2 shows, application processor
systems on chip (SoCs) are typically based on
one or more 32-bit reduced-instruction-set
computing (RISC) processor surrounded by
hardware accelerators that share a common
multlevel cache and DRAM interface. This
shared infrastructure is attractive from a cost
perspective but creates major bottenecks in
terms of memory access, where multimedia
applications demand real-time performance
but must contend with user applications and
a platform OS such as Android. Thus, the
platform often underdelivers in terms of
computational video performance or power
efficiency. A more attractive model is to build
a software programmable architecture as a
coprocessor to an application processor,
rather than using fixed-function or configura-
ble hardware." Such a coprocessor can then
abstract away a lot of the hard real-time
requirements in dealing with multiple cam-
era sensors and accelerometers from the
application processor and making the entire
ensemble appear as a single super-intelligent
MIPI camera below the Android camera’s hard-
ware abstraction layer. As a result, the architec-
ture presented in this article focuses on power-
efficient operation, as well as area efficiency,
allowing product derivatives to be imple-
mented entirely in software where previously
hardware and mask costs would have been
incurred. The software programmable model is
especially interesting in areas where standards
do not exist, such as body-pose estimation.”’

As a VPU SoC, Myriad 2 has a software-
controlled, multicore, multiported memory
subsystem and caches that can be config-
ured to allow handling of a large range of
workloads and provide high, sustainable
on-chip data and instruction bandwidth to
support the 12 processors, two RISC pro-
cessors, and high-performance video hard-

ware accelerator filters. A multichannel (or
multiagent) direct memory access engine
offloads data movement between the pro-
cessors, hardware accelerators, and mem-
ory, and a large range of peripherals
including cameras, LCD panels, and mass
storage, communicate with processors and
hardware accelerators. Additional program-
mable hardware acceleration helps speed up
hard-to-parallelize functions required by
video codecs, such as H.264 CABAC, VP9,
and SVC, as well as video processing kernels
for always-on computer-vision applications.
Up to 12 independent high-definition cam-
eras can be connected to 12 programmable
MIPI D-PHY lanes supporting CSI-2 organ-
ized in six pairs, each of which can be inde-
pendently clocked, to provide an aggregate
bandwidth of 18 Gbits per second. The
device also contains a USB 3.0 interface and
a gigabit Ethernet media access controller, as
well as various interfaces such as Serial
Peripheral Interface (SPI), Inter-Integrated
Circuit (I*C), and Universal Asynchronous
Receiver Transmitter (UART), connected to
a reduced number of I/O pins using a tree of
software-controlled multiplexers. In this
way, these interfaces support a broad range
of use cases in a low-cost plastic ball-grid
array package with integrated 2 to 4 Gbit
low-power DDR2/3 synchronous DRAM
stacked in package using a combination of
flip-chip bumping for the VPU die and wire
bonding for the stacked DRAM.

Because power efficiency is paramount,
the device employs a total of 17 power
islands, including one for each of the 12 inte-
grated SHAVE processors, allowing very
fine-grained power control in software. The
device supports 8-, 16-, 32-, and some 64-bit
integer operations as well as fpl16 (Open-
EXR) and f{p32 arithmetic, and it can
aggregate 1,000 Gflops (fp16). The resulting
architecture offers increased performance per
watt across a broad spectrum of computer
vision and computational imaging applica-
tions from augmented reality'® to simultane-
ous localization and mapping.'"

SHAVE processor microarchitecture

To guarantee sustained high performance
and minimize power use, the Movidius
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Figure 3. The Streaming Hybrid Architecture Vector Engine (SHAVE) processor microarchitecture is an eight-slot very long
instruction word processor capable of performing multiple 128-bit vector operations in parallel with multiple load/store, scalar
floating-point, integer, and control-flow operations in a single clock cycle.

SHAVE processor contains wide and deep
register files coupled with a variable-length
long instruction word (VLLIW) controlling
multiple functional units including extensive
SIMD capability for high parallelism and
throughput at both a functional unit and
processor level. The SHAVE processor is a
hybrid stream processor architecture combin-
ing the best features of GPUs, DSPs, and
RISC with both 8-, 16-, and 32-bit integer
and 16- and 32-bit floating-point arithmetic
as well as unique features such as hardware
support for sparse data structures. The archi-
tecture maximizes performance per watt
while maintaining ease of programmability,
especially in terms of support for design and
porting of multicore software applications.
As Figure 3 shows, VLIW packets control
multiple functional units that have SIMD

capability for high parallelism and through-
put at a functional unit and processor level.
The functional units are the predicated exe-
cution unit (PEU), the branch and repeat
unit, two 64-bit load-store units (LSUO and
LSU1), the 128-bit vector arithmetic unit
(VAU), the 32-bit scalar arithmetic unit, the
32-bit integer arithmetic unit, and the 128-bit
compare move unit (CMU), each of which is
enabled separately by a header in the variable-
length instruction. The functional units are
fed with operands from a 128-bit x 32-entry
vector register file with 12 ports and a 32-bit
X 32-entry general register file with 18 ports
delivering an aggregate 1,900 Gbytes per sec-
ond (GBps) of SHAVE register bandwidth
across all 12 SHAVEs at 600 MHz. The addi-
tional blocks in the diagram are the instruc-
tion decode and the debug control unit. A
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constant instruction fetch width of 128 bits
for variable-length instructions—with an
average instruction width of around 80 bits—
packed contiguously in memory and the five-
entry instruction prefetch buffer guarantee
that at least one instruction is always ready
while taking account of branches.

Computer-vision hardware acceleration

On Myriad 1, SHAVE implementations of
software filters offered, on average, in the
range of 1.5 to tens of cycles per pixel (the fast-
est kernel was downscaling Gaussian 5x1 at
0.675 cycles/pixel). With Myriad 2, designers
made a concerted effort to profile the key
performance-limiting kernels and define hard-
ware accelerators that could be flexibly com-
bined into hybrid hardware/software pipelines
for computer vision and advanced imaging
applications. These hardware accelerators sup-
port context switching in order to allow the
processing of multiple parallel camera streams.
For Myriad 2, the global performance target
was to achieve 20 to 30 the performance of
the previous generation Myriad 1 VPU.

The programmable hardware accelerators
implemented in the Myriad 2 VPU include a
poly-phase resizer, lens shading correction,
Harris corner detector, Histogram of Oriented
Gradients edge operator, convolution filter,
sharpening filter, gamma correction, tone
mapping, and luminance and chrominance
denoising. Each accelerator has multiple
memory ports to support the memory
requirements and local decoupling buffers to
minimize instantaneous bandwidth to and
from the 2-Mbyte multicore memory subsys-
tem. A local pipeline controller in each filter
manages the read and writeback of results to
the memory subsystem. The filters are con-
nected to the multicore memory subsystem
via a crossbar, and each filter can output one
fully computed pixel per cycle for the input
data, resulting in an aggregate throughput of
600 Mpixels per second at 600 MHz.

Multicore memory subsystem

The ability to combine image processing
and computer vision processing into pipe-
lines consisting of hardware and software ele-
ments was a key requirement because current
application processors are limited in this

respect. Thus, sharing data flexibly between
SHAVE processors and hardware accelerators
via the multiported memory subsystem was a
key challenge in the design of the Myriad 2
VPU. In the 28-nm Myriad 2 VPU, 12
SHAVE processors, hardware accelerators,
shared data, and SHAVE instructions reside
in a shared 2-Mbyte memory block called
Connection Matrix (CMX) memory, which
can be configured to accommodate different
instruction and data mixes depending on the
workload. The CMX block comprises 16
blocks of 128 Kbytes, which in turn comprise
four 32-Kbyte RAM instances organized as
4,096 words of 64 bits each, which are inde-
pendendy arbitrated, allowing each RAM
block in the memory subsystem to be accessed
independently. The 12 SHAVEs acting
together can move (theoretical maximum) 12
x 128 bits of code and 24 x 64 bits of data,
for an aggregate CMX memory bandwidth of
3,072 bits per cycle (1,536 bits of data). This
software-controlled multicore memory subsys-
tem and caches can be configured to allow
many workloads to be handled, providing
high sustainable on-chip bandwidth with a
peak bandwidth of 307 GBps (sixty-four
64-bit ports operating at 600 MHz) to sup-
port data and instruction supply to the 12
SHAVE processors and hardware accelera-
tors (see Figure 4). Furthermore, the CMX
subsystem supports multiple traffic classes
from latency-tolerant hardware accelerators
to latency-intolerant SHAVE vector pro-
cessors, allowing construction of arbitrary
pipelines from a mix of software running
on SHAVEs and hardware accelerators,
which can operate at high, sustained rates
on multiple streams simultaneously without
performance loss and at ultra-low-power
levels.

Myriad 2 implementation

Figure 5 shows a die plot of the 27 mm*
device, highlighting the major functional
blocks. Because power efficiency is para-
mount in mobile applications, Myriad 2 pro-
vides extensive clock and functional unit
gating and support for dynamic clock and
voltage scaling for dynamic power reduction.
It also contains 17 power islands—one for
each of the 12 SHAVE processors; one for



WA W Y Y S Y

CMX 2-Mbyte multiported RAM subsystem

PLL and CPM

128

[}
)
o
£
5]
=

17 independent power islands
power

A
v

Figure 4. Myriad 2 vision processing unit (VPU) system on chip (SoC) block diagram shows the 12 SHAVE cores and
associated Inter-SHAVE Interconnect, located below the multicore memory subsystem (connection matrix or CMX). Above
the CMX are the hardware accelerators for computer vision and image processing controlled by a first reduced-instruction-set
computing (RISC) processor, and above that again are the 1/O peripherals, which are controlled by a second RISC processor.
Finally, all of the processors in the system share access to the 64-bit DRAM interface.

the CMX memory subsystem; one for the
media subsystem, including video hardware
accelerators and RISC1; one for RISC2 and
peripherals; one for the clock and power
management; and one always-on domain.
This allows fine-grained power control in
software with minimal latency to return to
normal operating mode, including mainte-
nance of the static RAM (SRAM) state that
eliminates the need to reboot from external
storage. The device has been designed to
operate at 0.9 V for 600 MHz.

Myriad 2 applications

The SHAVE DSP supports streaming
workloads from the ground up, making deci-
sions about pixels or groups of pixels as they

are processed by the 128-bit VAU. Because
128-bit comparison using the CMU and
predication using the PEU can be performed
in parallel with the VAU, higher performance
can be achieved compared to a GPU in
which decisions must be made about stream-
ing data because GPUs suffer from perform-
ance loss due to branch divergence. For
example, the SHAVE processor excels when
processing the FAST9 algorithm, where 25
pixels on a Bresenham circle around the cen-
ter pixel must be evaluated for each pixel in,
for instance, a 1080p frame. The FAST9
algorithm looks for nine contiguous pixels
out of 25 on a Bresenham circle around the
center that are above or below a center-pixel
luminance value, meaning hundreds of oper-
ations must be computed for each pixel in a
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Figure 5. Myriad 2 VPU SoC die plot and 6 x 6 mm ball-grid array packaging. In the die plot, the SHAVE processors and

hardware accelerators are clustered around the CMX memory system. On the outer rim of the die, the DRAM interface and
MIPI, USB, and other peripherals as well as phase-locked loops dominate the periphery of the die, with the remainder of the
die being occupied by the RISC processor and peripheral subsystems.
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Figure 6. SHAVE very long instruction word mapping of GPU-Optimized FAST (kernel) to
microarchitecture. Here, the parallelism using the predicated execution unit, vector
arithmetic unit, and compare move unit allows eight of the 16 possible rotations about the
center pixel to be evaluated in a single cycle, a complex sequence of operations that would
require tens of cycles on a conventional machine.

high-definition image. This requires hun-
dreds of instructions on a scalar processor,
and performance optimization requires the
use of machine learning and training to
improve detector performance.'?
GPU-Optimized FAST (GO-FAST) is an
adaptation of FAST for SHAVE, making use
of decomposition and code optimization to
produce identical outputs efficiently on stream
processors. The SHAVE assembler code
shown in Figure 6 illustrates the operations
required to find a contiguous segment of nine
pixels on a circle surrounding a center pixel.

On SHAVE, conversely, the massive parallel-
ism allows the core of the FAST9 algorithm to
be implemented in three lines of a VLIW
assembler using a brute-force implementation
that evaluates 8 x rotations per VLIW packet
using three VLLIW slots (PEU, VAU, and
CMU). The result is that a single SHAVE
processor running at less than 200 MHz can
implement the FAST9 detector operating on
1080p input frames at over 60 Hz and detect-
ing hundreds of feature points.

The following list shows the code imple-
menting the 528(16 + 4 x 128) equivalent



operations, resulting in a performance effi-
ciency of 1,188 GOPS/W (16-bit), and using
all 12 SHAVE;s at the maximum 600-MHz
clock rate, under typical process, voltage, and
temperature conditions for a total power dis-
sipation of 800 mW, including peripherals
and stacked DRAM:

PEU: 8.

VAU: 128.

CMU: 128.
Operations/corner: 528.
Operations/cycle: 132.
MHz: 600.

SHAVEs: 12.

mW: 800.

GOPS/W Myriad2: 1,188.

As we previously mentioned, applica-

tions such as augmented realitym require
low latency. To this end, the Myriad 2 VPU
has hard real-time support for low-latency
computer vision, which is essential for line-
sync-based, super-low-latency processing.
This is enabled by deterministic data access
due to 2 Mbytes of on-chip SRAM and the
dedicated stacked DDR, which is dedi-
cated to computer vision tasks without any
CPU contention—as is typically seen in
application processors with multiple ARM
cores running Android in contention with
DSPs and GPUs. Finally, the VPU has low-
latency (less than 2 us worst-case) interrupt
handling with no contention with peripherals
such

as USB or SPI, and 64-bit timestamp sup-
port. As a result, an OpenCV-compatible,
multiscale Haar Cascade with 20 stages,
computed using 12 SHAVEs and one hard-
ware accelerator, can calculate 50,000 multi-
scale classifications for each 1080p resolution
frame, in less than 7 ms.

he Myriad2 microarchitecture presented

here is a first generation of a true VPU,
which we believe will become as synonymous
with vision processing as a GPU is with
graphics processing. The future challenges in
terms of evolving the VPU concept will be in
achieving yet higher processing efficiency per
milliwatt. Improving absolute efficiency will
rely on improved analysis and microarchitec-
tural enhancements to reduce power dissipated
per clock cycle. Larger gains in processing effi-

ciency may come through using hardware-
assisted event filtering in the always-on power
domain to detect if the inertial measurement
unit or other events occur and to power up the
Myriad hardware accelerators and SHAVE
processors only where it is highly likely that
there is useful visual data to process. This will
reduce the average power dissipation for many
interesting use cases in wearable cameras,
phones and tablets, and even small drones
or robots. We also expect future Myriad var-
iants to provide enhanced support for visual
object detection and classification and sup-
port for path finding and artificial intelli-
gence by providing enhanced hardware and
software support for deep learning and con-
volutional neural networks. This will allow
local low-latency decision making to be
made on the basis of the output of the
vision processing pipeline, which is essential
for the safe operation of autonomous
vehicles, robots, and drones that interact
closely with humans. HICRD
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