
 

 

Design guidelines for embedded real time face detection application 

 

White paper for Embedded Vision Alliance 

By Eldad Melamed 

 

Much like the human visual system, embedded computer vision systems perform the 

same visual functions of analyzing and extracting information from video in a wide 

variety of products.  

In embedded portable devices such as Smartphones, digital cameras, and camcorders, 

the elevated performance has to be delivered with limited size, cost, and power. 

Emerging high-volume embedded vision markets include automotive safety, 

surveillance, and gaming. Computer vision algorithms identify objects in a scene, and 

consequently produce one region of an image that has more importance than other 

regions of the image. For example, object and face detection can be used to enhance 

video conferencing experience, management of public security files, content based 

retrieval and many other aspects.  

Cropping and resizing can be done to properly center the image on a face. In this paper 

we present an application that detects faces in digital image, crops the selected main 

face and resize it to a fixed size output image (see figure 1).  

The application can be used on a single image or on a video stream, and is designed to 

run in real time. As far as real-time face detection on mobile devices is concerned, 

appropriate implementation steps need to be made in order to achieve a real-time 

throughput.  

This paper presents such steps for real-time deployment of face detection application on 

programmable vector processor. The steps taken are general purpose in the sense that 

they can be used to implement similar computer vision algorithms on any mobile device. 

 



 

 

 

Figure 1 – CEVA face detection application 

While still image processing consumes a small amount of bandwidth and allocated 

memory, video can be considerably demanding on today’s memory systems. 

At the other end of the spectrum, memory system design for computer vision algorithms 

can be extremely challenging because of the extra number of processing steps required 

to detect and classify objects. Consider a thumbnail with 19x19 pixels size of face 

pattern. There are 256361 possible combinations of gray values only for this tiny image, 

which impose extremely high dimensional space. Because of the complexities of face 

image, explicit description of the facial feature has certain difficulties; therefore other 

methods which are based on a statistical model have been developed. These methods 

consider human face region as one pattern, construct classifier by training a lot of “Face” 

and “non-face” samples, and then determine whether the images contains human face 

by analyzing the pattern of the detection region. 

Other challenges that face detection algorithms must overcome are: pose (frontal, 45 

degree, profile, upside down), presence or absence of structural components (beards, 

mustaches, glasses), facial expression, occlusion (faces may be partially occluded by 

other objects), image orientation (face appearance directly vary for different rotations 

about the camera's optical axis), and imaging conditions (lighting, camera 

characteristics, resolution). 



 

 

 

Although many face detection algorithms have been introduced in the literature, only a 

handful of them can meet the real-time constraints of mobile devices. While many face 

detection algorithms have been reported to generate high detection rates, very few of 

them are suitable for real-time deployment on mobile devices such as cell-phones due to 

the computation and memory limitations of these devices.  

Normally, real-time implementations of face detection algorithms are done on PC 

platforms with relatively powerful CPUs and large memory sizes. The examination of the 

existing face detection products reveal that the algorithm introduced by Viola and Jones 

in 2001 has been widely adopted. This is a breakthrough work which allowed 

appearance-based methods to run in real-time, while keeping the same or improved 

accuracy.  

The algorithm uses a boosted cascade of simple features, and can be divided to three 

main components: (1) Integral graph - efficient convolution for fast feature evaluation; 

(2) Use Adaboost for feature selection and sort them in the order of importance. Each 

feature can be used as a simple (weak) classifier; (3) Use Adaboost to learn the cascade 

classifier (ensemble of weak classifiers) that filters out the regions that most likely do 

not contain faces. Figure 2 is a schematic representation of the cascade of classifiers. 

Within an image, most sub images are non-face instances.  

Based on this assumption we can use smaller and efficient classifiers to reject many 
negative examples at early stage while detecting almost all the positive instances. More 

complex classifiers are used at later stage to examine difficult cases. 

 

Example: 24 stages cascade classifier 

22feature classifier in the first stage => rejecting 60% non-faces while detecting 100% 

faces 

55feature classifier in the second stage => rejecting 80% non-faces while detecting 

100% faces 

20 feature classifier in stages 3, 4, and 5 

50 feature classifier in stages 6 and 7 

100 feature classifier in stages 8 to 12 

200 feature classifier in stage 13 to 24 



 

 

Figure 2 - The Cascade of Classifiers 

During the first stage of the face detection algorithm, rectangle features can be 

computed very rapidly using an intermediate representation called integral image. As 

shown in figure 3 the value of the integral image at point (x,y) is the sum of all the pixels 

above and to the left. The sum of pixels within D can be computed as 4+1-(2+3). 

 

 

Figure 3 – Rapid evaluation of rectangular features by integral image 



 

 

 

To implement a real time face detection application on embedded device there is a need 

for a high-level of parallelism, combining instruction-level and data-level parallelism. 

Very Long Instruction Word (VLIW) architectures allow a high level of concurrent 

instruction processing, providing extended parallelism as well as low power 

consumption.  

 

Single Instruction Multiple Data (SIMD) architectures enable single instructions to 

operate on multiple data elements resulting in code size reduction and increased 

performance. Using vector processor architecture accelerates these integral sum 

calculations by a factor of the parallel number of adders/subtractors. If a vector register 

can be loaded with 16 pixels, and these pixels can be added to the next vector 

simultaneously, the acceleration factor is 16. Evidently, adding similar vector processing 

unit to the processor doubles this factor. 

 

During the next face detection stages, the image is scanned at multiple positions and 

scales. Adaboost strong classifier (which is based on rectangle features) is applied to 

decide whether the search window contains a face or not. Again, a vector processor has 

obvious advantage – the ability to simultaneously compare multiple positions to 

threshold.  

Under the assumption that within an image, most sub images are non-face instances, 

more available parallel comparators mean faster acceleration.  

For example, if the architecture is designed with the ability to compare 2 vectors of 8 

elements each in 1 cycle, the rejection of 16 positions sub images will take only 1 cycle. 

To ease data loading, and to use the vector processor load/store unit efficiently, the 

positions can be spatially close one to another.  

 

In order to obtain highly parallel code, the architecture should support instruction 

predication. This enables branches caused by if-then-else constructs to be replaced with 

sequential code, thus reducing cycle count and code size. Allowing conditional 

execution, with the ability to combine conditions, achieve a higher degree of efficiency in 

control code. Moreover, non-sequential code, such as branches and loops, can be 

designed with a zero cycle penalty without requiring cumbersome techniques such as 

dynamic branch prediction and speculative execution that drive up the power dissipation 

of RISC processors. 



 

 

 

One of the key challenges in the application is memory bandwidth. The application 

needs to scan each frame of the video stream to perform the face detection. A video 

stream cannot be stored at the tightly coupled memory (TCM), because of its large data 

size. For example, 1 high definition frame in a YUV 4:2:0 format consumes 3 Mbytes of 

data memory.  

The high memory bandwidth causes higher power dissipation and involves more 

expensive DDR memory, contributing to a more costly bill of materials. An elegant 

solution is to store the pixels using data tiling, whereby 2-dimensional tiles are accessed 

from the DDR in a single burst, vastly improving the efficiency of the DDR. Direct memory 

access (DMA) can transfer data tiles between external memory and the core’s memory 

subsystem. During the final face detection application stage, the sub image that 

contains the detected face is resized to a fixed size output window.    

This process of image resizing is also used during the detection phases, when the image 

is scanned at multiple scales. Resizing algorithms are widely used in image processing 

for video up-scaling and down-scaling. The algorithm that is implemented in the face 

detection application is the bi-cubic algorithm.  

Cubic convolution interpolation determines the gray level value from the weighted 

average of the 16 closest pixels to the specified input coordinates, and assigns that 

value to the output coordinates. First, four one-dimension cubic convolutions are 

performed in one direction (horizontally) and then one more one-dimension cubic 

convolution is performed in the perpendicular direction (vertically). This means that to 

implement a two-dimension cubic convolution, a one-dimension cubic convolution is all 

that is needed. 

 

A vector processor core that has powerful load-store capabilities to quickly and 

efficiently access the data is a crucial feature for such applications, where algorithms 

operate on blocks of data. The resizing algorithm optimization can be satisfied by 

capability to access 2-dimensional blocks of memory from the memory in a single cycle.  

 

This feature allows the processor to efficiently achieve high memory bandwidth without 

the need to load unnecessary data or burden computational units with performing data 

manipulations.  



 

 

 

Furthermore, a capability to transpose a block of data, during data access, without any 

cycle penalty, enabling a transposed block of data to be accessed in a single cycle, is 

extremely practical for the implementation of the horizontal and vertical filters. The 

horsepower of the processor is a result of its ability to perform powerful convolutions, 

allowing parallel filters to be performed in a single cycle.   

 

An example for efficient solution is loading 4x8 block of bytes in one cycle, and then 

performing the cubic convolution in the vertical direction using 4 pixels for each 

iteration. The 4 pixels are pre ordered in 4 separate vector registers, so we can get 8 

results simultaneously.  

These intermediate results are then processed exactly the same, but with loading the 

data in transposed format, so the horizontal filter is done. In order to preserve results 

accuracy, initialization with a rounding value and post-shift of the result is needed. The 

filter configuration should enable these features without requiring a dedicated 

instruction.  

 

Overall, this kind of parallel vector processing solution kernel can be balanced between 

the load/store unit operations and the processing units. Generally, the data bandwidth 

limitations and the cost of processing units in means of power consumption and die area 

restricts the implementation efficiency; yet it is clear that major acceleration over scalar 

processor architectures is achieved. 

 

A Multipurpose, Programmable HD Video and Image Platform for Multimedia Devices 

CEVA-MM3000 is a scalable, fully programmable multimedia platform that can be 

integrated into SoCs to deliver 1080p 60fps video decode and encode, ISP functions and 

vision applications, completely in software. The platform consists of two specialized 

processors, a Stream Processor and a Vector Processor, combined into a complete multi-

core system, including local and shared memories, peripherals, DMA and standard 

bridges to external busses. This comprehensive multi-core platform was designed 

specifically to meet low-power requirements for mobile devices and other consumer 

electronics. 

 



 

 

 

The Vector Processor includes two independent Vector Processing Units (VPUs). The 

VPUs are responsible for all vector computations. These consist of both inter-vector 

operations (using single instruction multiple data) and intra-vector operations. The inter-

vector instructions can operate on sixteen 8-bit (byte) elements or eight 16-bit (word) 

elements, and can use pairs of vector registers to form 32-bit (double-word) elements. 

The VPU has the ability to complete eight parallel filters of six taps in a single cycle.   

 

While the VPUs serve as the computational workhorse of the Vector Processor, the Vector 

Load and Store Unit (VLSU) serves as the vehicle for transferring data from/to the Data 

Memory Sub-System to/from the Vector Processor. The VLSU has a 256-bit bandwidth 

for both load and store operations, and supports non-aligned accesses. The VLSU is 

powered with the capability to access 2-dimensional blocks of data in a single cycle, 

supporting various block sizes.  

 

 

 

Figure 4 - loading a 4x4 block of pixels 



 

 

 

To ease the task of the VPUs, the VLSU can flexibly manipulate the structure of the data 

when reading/writing the vector registers. A block of data can be transposed during data 

access without any cycle penalty, enabling a transposed block of data to be accessed in 

a single cycle. The transpose function can be dynamically set or cleared. In this way, the 

same function can be re-used for both horizontal and vertical filters, saving development 

and debug time of each filter, while reducing the program memory footprint.  
 

Conclusion 

An embedded vision application like face detection with cropping and resizing can be 

one example from the diversity of algorithms that can be efficiently implemented for 

consumer devices with the CEVA-MM3000 platform. The future predicts growing demand 

for similar and more complicated applications; all can utilize the programmability and 

scalability of the CEVA-MM3000 architecture. 


