
Page 1

Challenges to Embedding Computer Vision
J. Scott Gardner

General Manager and Editor-in-Chief

Embedded Vision Alliance (www.embedded-vision.com)
May 16, 2011

For many of us, the idea of computer vision was first

imagined as the unblinking red lens through which a

computer named HAL spied on the world around itself

in 2001: A Space Odyssey (Arthur C. Clark and

Stanley Kubrick, 1968). The computers and robots in

science fiction are endowed with vision and

computing capabilities that often exceed those of mere

humans. Researchers in computer vision understand

the truth: computer vision is very difficult, even when

implemented on high-performance computer systems.

Arthur C. Clarke underestimated these challenges when he wrote that the

HAL 9000 became operational on January 12, 1997. As just one example,

HAL was able to read the lips of the astronauts, something not yet possible

with modern, high-performance computers. While the HAL 9000 was

comprised of hundreds of circuit boards, this article takes the computer

vision challenges to the world of embedded systems. The fictional Dr.

Chandra would have been severely constrained if trying to design HAL into

a modern embedded system. Yet, embedded vision systems are being built

today, and these real-world successors of HAL meet the unique design

constraints that are critical for creating successful embedded products.

Why is Computer Vision so Difficult?
Computer vision has been described as “inverse 3D graphics”, but vision is

orders of magnitude more difficult than rendering a single 2D representation

of a 3D scene database viewed through a virtual camera. In 3D graphics, the

computer already knows about the objects in the environment and

implements a “feed-forward” computation to render a camera view. In

computer vision, an observed scene must be analyzed to build the equivalent

of a scene database which must correctly identify the characteristics of the

objects in the scene. An embedded computer needs to enhance the image

and then make inferences to identify the objects and correctly interpret the

scene.

Figure 1 HAL 9000 – a

machine that sees. Source:

Wiki Commons

http://www.embedded-vision.com/

Page 2

However, vision systems don’t have

perfect information about a scene, since

the camera field of view will often include

occluded objects. It would be very

difficult to computationally recreate a 3D

scene database with the same detail as the

source data for a 3D graphics renderer.

To simplify the problem, a vision system

usually works with assumptions about the

type of objects in a scene, and complex

algorithms handle the cases where moving objects become occluded and

perhaps disappear from the frame. While real-time, pixel-level processing

of streaming image data is obviously compute-intensive, the complexities

caused by occlusion (or other depth of field issues) require high-level

processing of data that may span several frames. To make the task even

more difficult, the high-level processing often must identify and track a

moving object of interest in a scene that has background motion, such as

trees blowing in the wind.

Embedded Systems Constrain the Compute Resources
Decades of research in computer vision algorithms have finally advanced

computer vision technology to the point where it can solve real-world

problems. However, researchers developed these algorithms on high-

performance computer systems with fast, general-purpose CPUs and copious

amounts of memory. Many of these algorithms are not practical to

implement on an embedded system, since embedded system design is all

about designing with constraints. Embedded systems deal with a large

number of technical design constraints that often vary for each project.

Examples of technical constraints include cost, power consumption, size,

weight, acoustic noise, etc. Moreover, sometimes a project is constrained by

issues that aren’t in a data sheet. Examples of these design constraints

include design time, testing cost, software development environment,

availability of libraries, design reuse issues, etc.

Figure 2 Rendered 3D Scene with occluded

objects. Source: Wiki Commons

Page 3

Constraints Lead to a Host of Unique Design Issues
To implement computer vision in an embedded system, designers need to

identify the constraints that will have a dramatic impact on algorithm

selection and hardware requirements to meet the performance goals.

Experienced embedded system designers already understand these design

constraint issues, but many may not have experience with modern computer

vision algorithms. Computer vision experts who have only developed

software on general-purpose computers will need to adapt to the constrained

world of embedded computing. Most of this discussion assumes the reader

is new to embedded system design. The following brief overview covers

some of the issues to be considered when developing a computer vision

solution for an embedded system.

1. Specialized computing hardware
Few embedded systems have a power

budget for implementing the entire computer

vision workload on a general-purpose

processor. While very flexible, a purely

general-purpose software approach isn’t the

most energy-efficient solution, and many

computer vision applications would require

a high-end, workstation-class processor to

run these workloads. The raw computing

hardware in a high-end CPU requires the support of millions of

transistors that deal with reading instructions and moving data to

support a broad range of workloads. A system with specially-built,

dedicated hardware can consume less than 100
th
 of the power when

compared to a general-purpose CPU performing the same math.

However, the general-purpose CPU is easy to program and can

efficiently process the high-level operations in the computer vision

pipeline. For pixel-level processing, specialized programmable

devices efficiently process streaming data and algorithms with large

amounts of parallelism. Examples include DSPs, GPUs, and FPGAs.

Most of these devices also integrate a general-purpose embedded

CPU. This is only a high-level snapshot of a topic that is covered in

detail by the Embedded Vision Alliance website.

Figure 3 Pentium 3 CPU.

Source: Wiki Commons.

Page 4

2. Smaller memory footprint
As memory chip densities continue to

increase, it would be easy to discount

memory size limitations as a long-

term problem for embedded vision

systems.

However, the memory constraint

isn’t going away, since adding

memory always incurs a cost – to power, weight, size, level of

integration, reliability, etc. In many embedded vision systems, the

memory system isn’t a single bank of DRAM, easily upgraded by

dropping in another memory stick. There are memory storage

elements at various places in the vision pipeline, each supporting a

different role in the processing workflow and incurring a different cost

for adding more memory. Often these memory storage elements are

integrated with other computing resources on a single chip, so there is

a trade-off in silicon area as memory space competes for real estate

with other integrated devices. There are also additional complexities

related to memory latency when adding extra devices. These memory

issues are difficult to spot when developing algorithms on a

workstation, but they become major issues when developing an

embedded vision system.

3. Bandwidth issues
One of the high-level design issues in

computer vision relates to the age-old

question of distributed versus centralized

computing models. In many vision systems,

multiple imaging sensors are remotely

collecting real-time video data for analysis.

The question quickly surfaces of whether to

process the data near the camera or to ship the

data to a centralized computer for processing.

Once again, the best choice will depend on the constraints of the

system. How much bandwidth is available to get multiple camera

feeds back to the central processing unit? Is this the most cost-

effective approach if a small amount of processing at the camera

could reduce the data rate substantially?

Figure 4 DDR Memory. Source: Wiki

Commons.

Figure 5 Video panel. Source:

Wiki Commons.

Page 5

4. Security issues
The question of security for an embedded

system relates to the issue of distributed

computing, since remote imaging devices

require detection of tampering and perhaps

even need secure communication of high-

speed video data. Adding security features

incurs a cost that may not fit within the

system constraints. An interesting example

of this issue was the discovery that the US military did not encrypt

video data from some of its early drones.

5. New algorithms and optimizations for embedded systems
The focus on design constraints leads to

a question about whether classical

computer vision algorithms, developed

on workstations or even mainframes,

represent the best solution for an

embedded vision system. On the other

hand, some of the early computers had

similar constraints. The circular queue

is an example of a processing technique

for spatial filtering in a system that is

memory-constrained. This technique

dropped out of fashion when computer

systems had plenty of memory to store

an entire image. A spatial filter traverses across an image while only

accessing data from a number of image rows that is equal to the filter

size. For example, a 5x5 filter window only accesses 5 rows. After

the spatial filter processes all 5 rows, the filter loads the next row and

removes the top row (changes the circular pointer to load the new row

in the oldest row memory). In this fashion, only the data being

processed needs to occupy scarce memory. Any of these techniques

add complexity for the software designer, but that is the constant

trade-off for embedded system designers. Dealing with hardware

constraints is just part of life for the software team working on

embedded computers.

Figure 6 Predator drone. Source:

Wiki Commons.

Figure 7 5x5 Spatial Filter. Source: Wiki

Commons.

Page 6

The EVA Community Addresses these Design Issues
Science fiction has once again become a

reality, and our machines have started to see

and understand the world around them. This

article started with a look at computer vision

as it was envisioned in 1968 to bring HAL

to life with the ability to see and

communicate. It has been over 40 years since Clarke and Kubrick

anthropomorphized a machine by giving it these features. While most of the

world believes these innovations are just like every other technology

advance that catches up to science fiction, hopefully this article helps

highlight the huge amount of effort behind these embedded vision systems.

The good news is that embedded vision is incredibly fascinating, and the

visual aspect of these embedded products gives a tangible sense of

accomplishment when you see it working. Whether you’re an experienced

embedded system designer wanting to learn about computer vision or a

computer vision expert wanting to design for embedded systems, welcome

to the world of embedded vision. Please join the conversation at

www.embedded-vision.com and share your expertise with others in this

rapidly-growing field.

http://www.embedded-vision.com/

