
39

Chapter 2

Image Pre-Processing

“I entered, and found Captain Nemo deep in algebraical calculations of
x and other quantities.”

—Jules Verne, 20,000 Leagues Under The Sea

This chapter describes the methods used to prepare images for further analysis, including
interest point and feature extraction. Some of these methods are also useful for global
and local feature description, particularly the metrics derived from transforms and basis
spaces. The focus is on image pre-processing for computer vision, so we do not cover
the entire range of image processing topics applied to areas such as computational
photography and photo enhancements, so we refer the interested reader to various
other standard resources in Digital Image Processing and Signal Processing as we go
along [4,9,325,326], and we also point out interesting research papers that will enhance
understanding of the topics.

Note ■ Readers with a strong background in image processing may benefit from a light
reading of this chapter.

Perspectives on Image Processing
Image processing is a vast field that cannot be covered in a single chapter. So why do we
discuss image pre-processing in a book about computer vision? The reason is to advance
the science of local and global feature description, as image pre-processing is typically
ignored in discussions of feature description. Some general image processing topics are
covered here in light of feature description, intended to illustrate rather than to proscribe,
as applications and image data will guide the image pre-processing stage.

Some will argue that image pre-processing is not a good idea, since it distorts or
changes the true nature of the raw data. However, intelligent use of image pre-processing
can provide benefits and solve problems that ultimately lead to better local and global
feature detection. We survey common methods for image enhancements and corrections
that will affect feature analysis downstream in the vision pipeline in both favorable and
unfavorable ways, depending on how the methods are employed.

ChapteR 2 ■ Image pRe-pRoCessIng

40

Image pre-processing may have dramatic positive effects on the quality of feature
extraction and the results of image analysis. Image pre-processing is analogous to the
mathematical normalization of a data set, which is a common step in many feature
descriptor methods. Or to make a musical analogy, think of image pre-processing as
a sound system with a range of controls, such as raw sound with no volume controls;
volume control with a simple tone knob; volume control plus treble, bass, and mid; or
volume control plus a full graphics equalizer, effects processing, and great speakers in an
acoustically superior room. In that way, this chapter promotes image pre-processing by
describing a combination of corrections and enhancements that are an essential part of a
computer vision pipeline.

Problems to Solve During Image Pre-Processing
In this section we suggest opportunities for image pre-processing that are guided
according to the feature descriptor method you’ve chosen. Raw image data direct from
a camera may have a variety of problems, as discussed in Chapter 1, and therefore it is
not likely to produce the best computer vision results. This is why careful consideration
of image pre-processing is fundamental. For example, a local binary descriptor using
gray scale data will require different pre-processing than will a color SIFT algorithm;
additionally, some exploratory work is required to fine-tune the image pre-processing
stage for best results. We explore image pre-processing by following the vision pipelines
of four fundamental families of feature description methods, with some examples, as
follows:

1. Local Binary Descriptors (LBP, ORB, FREAK, others)

2. Spectra Descriptors (SIFT, SURF, others)

3. Basis Space Descriptors (FFT, wavelets, others)

4. Polygon Shape Descriptors (blob object area, perimeter, centroid)

These families of feature description metrics are developed into a taxonomy in
Chapter 5. Before that, though, Chapter 4 discusses the feature descriptor building
concepts, while Chapter 3 covers global feature description and then Chapter 6 surveys
local feature description. The image pre-processing methods and applications introduced
here are samples, but a more developed set of examples, following various vision
pipelines, is developed in Chapter 8, including application-specific discussions of the
pre-processing stage.

Vision Pipelines and Image Pre-Processing
Table 2-1 lists common image pre-processing operations, with examples from each of
the four descriptor families, illustrating both differences and commonality among these
image pre-processing steps, which can be applied prior to feature description. Our intent
here is to illustrate rather than proscribe or limit the methods chosen.

ChapteR 2 ■ Image pRe-pRoCessIng

41

Local binary features deal with the pixel intensity comparisons of point-pairs. This
makes the comparisons relatively insensitive to illumination, brightness, and contrast, so
there may not be much need for image pre-processing to achieve good results. Current
local binary pattern methods as described in the literature do not typically call for much
image pre-processing; they rely on a simple comparison threshold that can be adjusted to
account for illumination or contrast.

Spectra descriptors, such as SIFT (which acts on local region gradients) and SURF
(which uses HAAR-like features with integrated pixel values over local regions), offer
diverse pre-processing opportunities. Methods that use image pyramids often perform
some image pre-processing on the image pyramid to create a scale space representation
of the data using Gaussian filtering to smooth the higher levels of the pyramid. Basic
illumination corrections and filtering may be useful to enhance the image prior to
computing gradients—for example, to enhance the contrast within a band of intensities
that likely contain gradient-edge information for the features. But in general, the literature
does not report good or bad results for any specific methods used to pre-process the
image data prior to feature extraction, and therein resides the opportunity.

Table 2-1. Possible Image Pre-Processing Enhancements and Corrections as Applied to
Different Vision Pipelines

Image
Pre-Processing

Local Binary
(LBP, ORB)

Spectra
(SIFT, SURF)

Basis Space
(FFT, Code books)

Polygon Shape
(Blob Metrics)

Illumination
corrections

x x x x

Blur and focus
corrections

x x x x

Filtering and noise
removal

x x x x

Thresholding x

Edge enhancements x x

Morphology x

Segmentation x

Region processing
and filters

x x x

Point processing x x

Math and statistical
processing

x x

Color space
conversions

x x x

ChapteR 2 ■ Image pRe-pRoCessIng

42

Basis space features are usually global or regional, spanning a regular shaped
polygon—for example, a Fourier transform computed over the entire image or block.
However, basis space features may be part of the local features, such as the Fourier spectrum
of the LBP histogram, which can be computed over histogram bin values of a local descriptor
to provide rotational invariance. Another example is the Fourier descriptor used to compute
polygon factors for radial line segment lengths showing the roundness of a feature to provide
rotational invariance. See Chapter 3, especially Figure 3-19.

The most complex descriptor family is the polygon shape based descriptors, which
potentially require several image pre-processing steps to isolate the polygon structure and
shapes in the image for measurement. Polygon shape description pipelines may involve
everything from image enhancements to structural morphology and segmentation
techniques. Setting up the pre-processing for polygon feature shape extraction typically
involves more work than any other method, since thresholds and segmentation require
fine-tuning to achieve good results. Also note that polygon shape descriptors are not local
patterns but, rather, larger regional structures with features spanning many tens and even
hundreds of pixels, so the processing can be more intensive as well.

In some cases, image pre-processing is required to correct problems that would
otherwise adversely affect feature description; we look at this next.

Corrections
During image pre-processing, there may be artifacts in the images that should be
corrected prior to feature measurement and analysis. Here are various candidates for
correction.

•	 Sensor corrections. Discussed in Chapter 1, these include dead
pixel correction, geometric lens distortion, and vignetting.

•	 Lighting corrections. Lighting can introduce deep shadows that
obscure local texture and structure; also, uneven lighting across
the scene might skew results. Candidate correction methods
include rank filtering, histogram equalization, and LUT remap.

•	 Noise. This comes in many forms, and may need special image
pre-processing. There are many methods to choose from, some of
which are surveyed in this chapter.

•	 Geometric corrections. If the entire scene is rotated or taken
from the wrong perspective, it may be valuable to correct the
geometry prior to feature description. Some features are more
robust to geometric variation than others, as discussed in
Chapters 4, 5, and 6.

•	 Color corrections. It can be helpful to redistribute color
saturation or correct for illumination artifacts in the intensity
channel. Typically color hue is one of the more difficult attributes
to correct, and it may not be possible to correct using simple
gamma curves and the sRGB color space. We cover more accurate
colorimetry methods later in this chapter.

ChapteR 2 ■ Image pRe-pRoCessIng

43

Enhancements
Enhancements are used to optimize for specific feature measurement methods, rather
than fix problems. Familiar image processing enhancements include sharpening and
color balancing. Here are some general examples of image enhancement with their
potential benefits to feature description.

•	 Scale-space pyramids. When a pyramid is constructed using an
octave scale and pixel decimation to sub-sample images to create
the pyramid, sub-sampling artifacts and jagged pixel transitions
are introduced. Part of the scale-space pyramid building process
involves applying a Gaussian blur filter to the sub-sampled
images, which removes the jagged artifacts.

•	 Illumination. In general, illumination can always be
enhanced. Global illumination can be enhanced using simple
LUT remapping and pixel point operations and histogram
equalizations, and pixel remapping. Local illumination can be
enhanced using gradient filters, local histogram equalization, and
rank filters.

•	 Blur and focus enhancements. Many well-known filtering
methods for sharpening and blurring may be employed at the
pre-processing stage. For example, to compensate for pixel
aliasing artifacts introduced by rotation that may manifest as
blurred pixels which obscure fine detail, sharpen filters can be
used to enhance the edge features prior to gradient computations.
Or, conversely, the rotation artifacts may be too strong and can be
removed by blurring.

In any case, the pre-processing enhancements or corrections are dependent on the
descriptor using the images, and the application.

Preparing Images for Feature Extraction
Each family of feature description methods has different goals for the pre-processing
stage of the pipeline. Let’s look at a few examples from each family here, and examine
possible image pre-processing methods for each.

Local Binary Family Pre-Processing
The local binary descriptor family is primarily concerned with point-pair intensity value
comparisons, and several point-pair patterns are illustrated in Chapter 4 for common
methods such as FREAK, BRISK, BRIEF, and ORB. As illustrated in Figure 2-4, the

ChapteR 2 ■ Image pRe-pRoCessIng

44

comparative difference (<, >, =) between points is all that matters, so hardly any image
pre-processing seems needed. Based on this discussion, here are two approaches for
image pre-processing:

1. Preserve pixels as is. Do nothing except use a pixel value-
difference compare threshold, such as done in the Census
transform and other methods, since the threshold takes care
of filtering noise and other artifacts.

if(|point1–point2|>threshold)

2. Use filtering. In addition to using the compare threshold,

apply a suitable filter to remove local noise, such as a
smoothing or rank filter. Or, take the opposite approach and
use a sharpen filter to amplify small differences, perhaps
followed by a smoothing filter. Either method may prove to
work, depending on the data and application.

Figure 2-1 uses center-neighbor point-pair comparisons in a 3x3 local region to
illustrate the difference between local threshold and a pre-processing operation for the
local binary pattern LBP, as follows:

Left image: Original unprocessed local 3x3 region data; compare •	
threshold = 5, dark pixels > 5 from center pixel.

Left center image: Compare threshold = 10; note pattern shape is •	
different simply by changing the threshold.

Right center image: After a Laplacian sharpening filter is applied •	
to 3x3 region, note that the center pixel value is changed from 52
to 49, so with the compare threshold set to 5 the pattern is now
different from original on the left.

Right image: Threshold on Laplacian filtered data set to 10; note •	
different resulting binary pattern.

Figure 2-1. How the LBP can be affected by pre-processing, showing the compare threshold
value effects. (Left) Compare threshold = 5. (Center left) Compare threshold = 10. (Center
right) Original data after Laplacian fitler applied. (Right) Compare threshold = 5 on
Laplacian filtered data

ChapteR 2 ■ Image pRe-pRoCessIng

45

Spectra Family Pre-Processing
Due to the wide range of methods in the spectra category, it is difficult to generalize the
potential pre-processing methods that may be useful. For example, SIFT is concerned
with gradient information computed at each pixel. SURF is concerned with combinations
of HAAR wavelets or local rectangular regions of integrated pixel values, which reduces
the significance of individual pixel values.

For the integral image-based methods using HAAR-like features such as SURF and
Viola Jones, here are a few hypothetical pre-processing options.

1. Do nothing. HAAR features are computed from integral
images simply by summing local region pixel values; no fine
structure in the local pixels is preserved in the sum, so one
option is to do nothing for image pre-processing.

2. Noise removal. This does not seem to be needed in the HAAR
pre-processing stage, since the integral image summing in
local regions has a tendency to filter out noise.

3. Illumination problems. This may require pre-processing;for
example, contrast enhancement may be a good idea if the
illumination of the training data is different from the current
frame. One pre-processing approach in this situation is to
compute a global contrast metric for the images in the training
set, and then compute the same global contrast metric in each
frame and adjust the image contrast if the contrast diverges
beyond a threshold to get closer to the desired global contrast
metric. Methods for contrast enhancement include LUT
remapping, global histogram equalization, and local adaptive
histogram equalization.

4. Blur. If blur is a problem in the current frame, it may
manifest similar to a local contrast problem, so local contrast
enhancement may be needed, such as a sharpen filter.
Computing a global statistical metric such as an SDM as part
of the ground truth data to measure local or global contrast
may be useful; if the current image diverges too much in
contrast, a suitable contrast enhancement may be applied as a
pre-processing step.

Note in Figure 2-2 that increasing the local-region contrast results in larger gradients
and more apparent edges. A feature descriptor that relies on local gradient information is
affected by the local contrast.

ChapteR 2 ■ Image pRe-pRoCessIng

46

For the SIFT-type descriptors that use local area gradients, pre-processing may
be helpful to enhance the local gradients prior to computation, so as to affect certain
features:

1. Blur. This will inhibit gradient magnitude computation and
may make it difficult to determine gradient direction, so
perhaps a local rank filter, high-pass filter, or sharpen filter
should be employed.

2. Noise. This will exacerbate local gradient computations and
make them unreliable, so perhaps applying one of several
existing noise-removal algorithms can help.

3. Contrast. If local contrast is not high enough, gradient
computations are difficult and unreliable. Perhaps a local
histogram equalization, LUT remap, rank filter, or even a
sharpen filter can be applied to improve results.

Basis Space Family Pre-Processing
It is not possible to generalize image pre-processing for basis space methods, since
they are quite diverse, according to the taxonomy we are following in this work. As
discussed in Chapters 4, 5, and 6, basis space methods include Fourier, wavelets, visual
vocabularies, KTL, and others. However, here we provide a few general observations on
pre-processing.

1. Fourier Methods, wavelets, Slant transform, Walsh
Hadamard, KLT. These methods transform the data into
another domain for analysis, and it is hard to suggest any
pre-processing without knowing the intended application.
For example, computing the Fourier spectrum produces
magnitude and phase, and phase is shown to be useful in
feature description to provide invariance to blur, as reported
in the LPQ linear phase quantization method described in
Chapter 6, so a blurry image may not be a problem in this case.

Figure 2-2. The effects of local contrast on gradients and edge detection: (Left) Original
image and Sobel edges. (Right) Contrasted adjusted image to amplify local region details
and resulting Sobel edges

ChapteR 2 ■ Image pRe-pRoCessIng

47

2. Sparse coding and visual vocabularies. These methods rely
on local feature descriptors, which could be SURF, SIFT, LBP,
or any other desired feature, derived from pixels in the spatial
domain. Therefore, the method for feature description will
determine the best approach for pre-processing. For example,
methods that use correlation and raw pixel patches as sparse
codes may not require any pre-processing. Or perhaps some
minimal pre-processing can be used, such as illumination
normalization to balance contrast, local histogram
equalization or a LUT contrast remap.

In Figure 2-3, the contrast adjustment does not have much affect on Fourier methods,
since there is no dominant structure in the image. Fourier spectrums typically reveal that
the dominant structure and power is limited to lower frequencies that are in the center of
the quadrant-shifted 2D plot. For images with dominant structures, such as lines and other
shapes, the Fourier power spectrum will show the structure and perhaps pre-processing
may be more valuable. Also, the Fourier power spectrum display is scaled to a logarithmic
value and does not show all the details linearly, so a linear spectrum rendering might show
the lower frequencies scaled and magnified better for erase of viewing.

Figure 2-3. In this example, no benefit is gained from pre-processing as shown in the Fourier
spectrum; (Left) Before. (Right) After contrast adjusting the input image

Polygon Shape Family Pre-Processing
Polygon shapes are potentially the most demanding features when considering image
pre-processing steps, since as shown in Table 2-1, the range of potential pre-processing
methods is quite large and the choice of methods to employ is very data-dependent.
Possibly because of the challenges and intended use-cases for polygon shape
measurements, they are used only in various niche applications, such as cell biology.

One of the most common methods employed for image preparation prior to
polygon shape measurements is to physically correct the lighting and select the subject
background. For example, in automated microscopy applications, slides containing cells
are prepared with florescent dye to highlight features in the cells, then the illumination
angle and position are carefully adjusted under magnification to provide a uniform
background under each cell feature to be measured; the resulting images are then much
easier to segment.

ChapteR 2 ■ Image pRe-pRoCessIng

48

As illustrated in Figures 2-4 and 2-5, if the pre-processing is wrong, the resulting
shape feature descriptors are not very useful. Here are some of the more salient options
for pre-processing prior to shape based feature extraction, then we’ll survey a range of
other methods later in this chapter.

Figure 2-4. Use of thresholding to solve problems during image pre-processing to prepare
images for polygon shape measurement: (Left) Original image. (Center) Thresholded red
channel image. (Right) Perimeter tracing above a threshold

Figure 2-5. Another sequence of morphological pre-processing steps preceding polygon
shape measurement: (Left) Original image. (Center) Range thresholded and dilated red
color channel. (Right) Morphological perimeter shapes taken above a threshold

1. Illumination corrections. Typically critical for defining
the shape and outline of binary features. For example, if
perimeter tracking or boundary segmentation is based on
edges or thresholds, uneven illumination will cause problems,
since the boundary definition becomes indistinct. If the
illumination cannot be corrected, then other segmentation
methods not based on thresholds are available, such as
texture-based segmentation.

2. Blur and focus corrections. Perhaps not as critical as
illumination for polygon shape detection, since the segmentation
of object boundary and shape is less sensitive to blur.

3. Filtering and noise removal. Shape detection is somewhat
tolerant of noise, depending on the type of noise. Shot
noise or spot noise may not present a problem, and is easily
removed using various noise-cleaning methods.

ChapteR 2 ■ Image pRe-pRoCessIng

49

4. Thresholding. This is critical for polygon shape detection
methods. Many thresholding methods are employed,
ranging from the simple binary thresholding to local adaptive
thresholding methods discussed later in this chapter.
Thresholding is a problematic operation and requires
algorithm parameter fine-tuning in addition to careful control
of the light source position and direction to deal with shadows.

5. Edge enhancements. May be useful for perimeter contour
definition.

6. Morphology. One of the most common methods employed
to prepare polygon shapes for measurement, covered later in
this chapter in some detail. Morphology is used to alter the
shapes, presumably for the better, mostly by combinations
or pipelines of erosion and dilation operations, as shown
in Figure 2-5. Morphological examples include object area
boundary cleanup, spur removal, and general line and
perimeter cleanup and smoothing.

7. Segmentation. These methods use structure or texture in
the image, rather than threshold, as a basis for dividing an
image into connected regions or polygons. A few common
segmentation methods are surveyed later in this chapter.

8. Area/Region processing. Convolution filter masks such as
sharpen or blur, as well as statistical filters such as rank filters
or media filters, are potentially useful prior to segmentation.

9. Point processing. Arithmetic scaling of image data point by
point, such as multiplying each pixel by a given value followed
by a clipping operation, as well as LUT processing, often is
useful prior to segmentation.

10. Color space conversions. Critical for dealing accurately with
color features, covered later in this chapter.

As shown In Figure 2-4, a range thresholding method uses the red color channel,
since the table background has a lot of red color and can be thresholded easily in red to
remove the table top. The image is thresholded by clipping values outside an intensity
band; note that the bottom right USB stick is gone after thresholding, since it is red and
below the threshold. Also note that the bottom center white USB stick is also mostly
gone, since it is white (max RGB values) and above the threshold. The right image shows
an attempt to trace a perimeter above a threshold; it’s still not very good, as more pre-
processing steps are needed.

ChapteR 2 ■ Image pRe-pRoCessIng

50

The Taxonomy of Image Processing Methods
Before we survey image pre-processing methods, it is useful to have a simple taxonomy
to frame the discussion. The taxonomy suggested is a set of operations, including point,
line, area, algorithmic, and data conversions, as illustrated in Figure 2-6. The basic
categories of image pre-processing operations introduced in Figure 2-1 fit into this simple
taxonomy. Note that each stage of the vision pipeline, depending on intended use, may
have predominant tasks and corresponding pre-processing operations.

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Matching, Classification

Augment, Render, Control

Vision Pipeline Stage Operation

Point

Line

Area

Algorithmic

Data conversion

Figure 2-6. Simplified, typical image processing taxonomy, as applied across the
vision pipeline

We provide a brief introduction to the taxonomy here, followed by a more detailed
discussion in Chapter 5. Note that the taxonomy follows memory layout and memory access
patterns for the image data. Memory layout particularly affects performance and power.

Point
Point operations deal with one pixel at a time, with no consideration of neighboring
pixels. For example, point processing operations can be divided into math, Boolean,
and pixel value compare substitution sections, as shown in Table 2-2 in the section later
on “Point Filtering.” Other point processing examples include color conversions and
numeric data conversions.

Line
Line operations deal with discrete lines of pixels or data, with no regard to prior or
subsequent lines. Examples include the FFT, which is a separable transform, where
pixel lines and columns can be independently processed in parallel as 1D FFT line
operations. If an algorithm requires lines of data, then optimizations for image
pre-processing memory layout, pipelined read/write, and parallel processing can be
made. Optimizations are covered in Chapter 8.

ChapteR 2 ■ Image pRe-pRoCessIng

51

Area
Area operations typically require local blocks of pixels—for example, spatial filtering via
kernel masks, convolution, morphology, and many other operations. Area operations
generate specific types of memory traffic, and can be parallelized using fine-grained
methods such as common shaders in graphics processors and coarse-grained thread
methods.

Algorithmic
Some image pre-processing methods are purely serial or algorithmic code. It is difficult
or even impossible to parallelize these blocks of code. In some cases, algorithmic blocks
can be split into a few separate threads for coarse-grained parallelism or else pipelined,
as discussed in Chapter 8.

Data Conversions
While the tasks are mundane and obvious, significant time can be spent doing simple
data conversions. For example, integer sensor data may be converted to floating point for
geometric computations or color space conversions. Data conversions are a significant
part of image pre-processing in many cases. Example conversions include:

Integer bit-depth conversions (8/16/32/64)•	

Floating point conversions (single precision to double precision)•	

Fixed point to integer or float•	

Any combination of float to integer and vice versa•	

Color conversions to and from various color spaces•	

Conversion for basis space compute, such as integer to and from •	
float for FFT

Design attention to data conversions and performance are in order and can provide
a good return on investment, as discussed in Chapter 8.

Colorimetry
In this section, we provide a brief overview of color science to guide feature description,
with attention to color accuracy, color spaces, and color conversions. If a feature
descriptor is using color, then the color representation and processing should be carefully
designed, accurate, and suited to the application. For example, in some applications it
is possible to recognize an object using color alone, perhaps recognizing an automobile
using its paint color, assuming that the vendor has chosen a unique paint color each
year for each model. By combining color with another simple feature, such as shape, an
effective descriptor can be devised.

ChapteR 2 ■ Image pRe-pRoCessIng

52

Color Science is a well-understood field defined by international standards and
amply described in the literature [249,250,251]. We list only a few resources here.

The Rochester Institute of Technology’s Munsel Color Science •	
Laboratory is among the leading research institutions in the
area or color science and imaging. It provides a wide range of
resources and has strong ties to industry imaging giants such as
Kodak, Xerox, and others.

The International Commission on Illumination (CIE) provides •	
standard illuminant data for a range of light sources as it pertains
to color science, as well as standards for the well-known color
spaces CIE XYZ, CIE Lab, and CIE Luv.

The ICC International Color Consortium provides the ICC •	
standard color profiles for imaging devices, as well as many other
industry standards, including the sRGB color space for color
displays.

Proprietary color management systems, developed by industry •	
leaders, include the Adobe CMM and Adobe RGB, Apple
ColorSync, and HP ColorSmart; perhaps the most advanced is
Microsoft’s Windows Color System, which is based on Canon’s
earlier Kyuanos system using on CIECAM02.

Overview of Color Management Systems
A full-blown color management system may not be needed for a computer vision
application, but the methods of color management are critical to understand when you
are dealing with color. As illustrated in Figure 2-7, a color management system converts
colors between the device color spaces, such as RGB or sRGB, to and from a colorimetric
color space, such as CIE Luv, Lab, Jch, or Jab, so as to perform color gamut mapping.
Since each device can reproduce color only within a specific gamut or color range,
gamut mapping is required to convert the colors to the closest possible match, using the
mathematical models of each color device.

ChapteR 2 ■ Image pRe-pRoCessIng

53

Illuminants, White Point, Black Point, and Neutral Axis
An illuminant is a light source such as natural light or a fluorescent light, defined as the
white point color by its spectral components and spectral power or color temperature.
The white point color value in real systems is never perfectly white and is a measured
quantity. The white point value and the oppositinal black point value together define
the endpoints of the neutral axis (gray scale intensity) of the color space, which is not a
perfectly straight color vector.

Color management relies on accurate information and measurements of the light
source, or the illuminant. Color cannot be represented without accurate information
about the light source under which the color is measured, since color appears different
under florescent light versus natural light, and so on. The CIE standards define several
values for standard illuminants, such as D65, shown in Figure 2-8.

Figure 2-7. Color management system with an RGB camera device model, sRGB display
device model, CMYK printer device model, gamut mapping module, and an illuminant model

ChapteR 2 ■ Image pRe-pRoCessIng

54

Device Color Models
Real devices like printers, displays, and cameras conventionally reproduce colors as
compared against standard color patches that have been measured using calibrated
light sources and spectrographic equipment—for example, the widely used Munsel
color patches that define color in terms hue, value, and chroma (HVC) against standard
illuminants. In order to effectively manage colors for a given device, a mathematical
model or device color model must be created for each device, defining the anomalies in
the device color gamut and its color gamut range.

For the color management system to be accurate, each real device must be spectrally
characterized and modeled in a laboratory to create a mathematical device model,
mapping the color gamut of each device against standard illumination models. The
device model is used in the gamut transforms between color spaces.

Devices typically represent color using the primary and secondary colors RGB
and CYMK. RGB is a primary, additive color space; starting with black, the RGB
color primaries red, green, and blue are added to create colors. CYMK is a secondary
color space, since the color components cyan, yellow, and magenta, are secondary
combinations of the RGB primary colors; cyan = green plus blue, magenta = red plus blue,
and yellow = red plus green. CYMK is also a subtractive color space, since the colors are
subtracted from a white background to create specific colors.

Figure 2-8. (Left) Representation of a color space in three dimensions, neutral axis for
the amount of white, hue angle for the primary color, and saturation for amount of color
present. (Right) CIE XYZ chromaticity diagram showing values of the standard illuminant
D65 OE as the white point, and the color primaries for R,G and B

ChapteR 2 ■ Image pRe-pRoCessIng

55

Color Spaces and Color Perception
Colorimetric spaces represent color in abstract terms such as lightness, hue or color,
and color saturation. Each color space is designed for a different reason, and each color
space is useful for different types of analysis and processing. Example simple color spaces
include HSV (hue, saturation, value) and HVC (hue, value, chroma). In the case of the CIE
color spaces, the RGB color components are replaced by the standardized value CIE XYZ
components as a basis for defining the CIE Luv and CIE Lab color spaces.

At the very high end of color science, we have the more recent CIECAM02
color models and color spaces such as Jch and Jab. CIECAM02 goes beyond just
the colorimetry of the light source and the color patch itself to offer advanced color
appearance modeling considerations that include the surroundings under which colors
are measured [254,249].

While CIECAM02 may be overkill for most applications, it is worth some study. Color
perception varies widely based on the surrounding against which the colors are viewed,
the spectrum and angles of combined direct and ambient lighting, and the human visual
system itself, since people do not all perceive color in the same way.

Gamut Mapping and Rendering Intent
Gamut mapping is the art and science of converting color between two color spaces and
getting the best fit. Since the color gamuts of each device are different, gamut mapping
is a challenge, and there are many different algorithms in use, with no clear winner.
Depending on the intent of the rendering, different methods are useful—for example,
gamut mapping from camera color space to a printer color space is different from
mapping to an LCD display for viewing.

The CAM02 system provides a detailed model for guidance. For example, a color
imaging device may capture the color blue very weakly, while a display may be able
to display blue very well. Should the color gamut fitting method use color clipping or
stretching? How should the difference between color gamuts be computed? Which
color space? For an excellent survey of over 90 gamut mapping methods, see the work of
Morovic [252].

In Figure 2-9 (left image), the sRGB color space is shown as fitting inside the Adobe
RGB color space, illustrating that sRGB does not cover a gamut as wide as Adobe RGB.
Each color gamut reproduces color differently, and each color space may be linear or
warped internally. The right image in Figure 2-9 illustrates one gamut mapping method
to determine the nearest color common to both color gamuts, using Euclidean distance
and clipping; however, there are many other gamut mapping distance methods as well.
Depending on the surrounding light and environment, color perception changes further
complicating gamut mapping.

ChapteR 2 ■ Image pRe-pRoCessIng

56

In gamut mapping there is a source gamut and a destination gamut. For example, the
source could be a camera and the destination could be an LCD display. Depending on
the rendering intent of the gamut conversion, different algorithms have been developed
to convert color from source to destination gamuts. Using the perceptual intent, color
saturation is mapped and kept within the boundaries of the destination gamut in an
effort to preserve relative color strength; and out-of-gamut colors from the source are
compressed into the destination gamut, which allows for a more reversible gamut map
translation. Using the colorimetric intent, colors may be mapped straight across from
source to destination gamut, and colors outside the destination gamut are simply clipped.

A common method of color correction is to rely on a simple gamma curve applied
to the intensity channel to help the human eye better visualize the data, since the gamma
curve brightens up the dark regions and compresses the light regions of the image, similar
to the way the human visual system deals with light and dark regions. However, gamut
correction bears no relationship to the true sensor data, so a calibrated, colorimetrically
sound approach is recommended instead.

Practical Considerations for Color Enhancements
For image pre-processing, the color intensity is usually the only color information that
should be enhanced, since the color intensity alone carries a lot of information and is
commonly used. In addition, color processing cannot be easily done in RGB space while
preserving relative color. For example, enhancing the RGB channels independently with
a sharpen filter will lead to Moiré fringe artifacts when the RGB channels are recombined
into a single rendering. So to sharpen the image, first forward-convert RGB to a color

Figure 2-9. The central problem of gamut mapping: (Left) Color sRGB and Adobe RGB
color gamuts created using Gamutvision software. (Right) Gamut mapping details

ChapteR 2 ■ Image pRe-pRoCessIng

57

space such as HSV or YIQ, then sharpen the V or Y component, and then inverse-convert
back to RGB. For example, to correct illumination in color, standard image processing
methods such as LUT remap or histogram equalization will work, provided they are
performed in the intensity space.

As a practical matter, for quick color conversions to gray scale from RGB, here are a
few methods. (1) The G color channel is a good proxy for gray scale information, since as
shown in the sensor discussion in Chapter 1, the RB wavelengths in the spectrum overlap
heavily into the G wavelengths. (2) Simple conversion from RGB into gray scale intensity I
can be done by taking I = R+G+B / 3. (3) The YIQ color space, used in the NTSC television
broadcast standards, provides a simple forward/backward method of color conversion
between RGB and a gray scale component Y, as follows:

R

G

B

é

ë

ê
ê
ê

ù

û

ú
ú
ú
= - -

-

é

ë

1

1

1

0 9663 0 6210

0 2721 0 6474

1 1070 1 7046

. .

. .

. .

êê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Y

I

Q

Y

I

Q

é

ë

ê
ê
ê

ù

û

ú
ú
ú
= - -

0 299 0 587 0 114

0 595716 0 274453 0 321263

0 2

. . .

. . .

. 111456 0 522591 0 311135-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú. .

R

G

B

Color Accuracy and Precision
If color accuracy is important, 8 bits per RGB color channel may not be enough. It is
necessary to study the image sensor vendor’s data sheets to understand how good the
sensor really is. At the time of this writing, common image sensors are producing 10 to
14 bits of color information per RGB channel. Each color channel may have a different
spectral response, as discussed in Chapter 1.

Typically, green is a good and fairly accurate color channel on most devices; red is
usually good as well and may also have near infrared sensitivity if the IR filter is removed
from the sensor; and blue is always a challenge since the blue wavelength can be hardest
to capture in smaller silicon wells, which are close to the size of the blue wavelength, so
the sensor vendor needs to pay special attention to blue ssnsing details.

Spatial Filtering
Filtering on discrete pixel arrays is considered spatial filtering, or time domain filtering,
in contrast to filtering in the frequency domain using Fourier methods. Spatial filters are
alternatives to frequency domain methods, and versatile processing methods are possible
in the spatial domain.

ChapteR 2 ■ Image pRe-pRoCessIng

58

Convolutional Filtering and Detection
Convolution is a fundamental signal processing operation easily computed as a discrete
spatial processing operation, which is practical for 1D, 2D, and 3D processing. The basic
idea is to combine, or convolve, two signals together, changing the source signal to be
more like the filter signal. The source signal is the array of pixels in the image; the filter
signal is a weighted kernel mask, such as a gradient peak shape and oriented edge shape
or an otherwise weighted shape. For several examples of filter kernel mask shapes, see
the section later in the chapter that discusses Sobel, Scharr, Prewitt, Roberts, Kirsch,
Robinson, and Frei-Chen filter masks.

Convolution is typically used for filtering operations such as low-pass, band pass,
and high-pass filters, but many filter shapes are possible to detect features, such as edge
detection kernels tuned sensitive to edge orientation, or even point, corner, and contour
detectors. Convolution is used as a detector in the method of convolution networks [85],
as discussed in Chapter 4.

The sharpen kernel mask in Figure 2-10 (center image) is intended to amplify the
center pixel in relation to the neighboring pixels. Each pixel is multiplied by its kernel
position, and the result (right image) shows the center pixel as the sum of the convolution,
which has been increased or amplified in relation to the neighboring pixels.

-(35 + 43 + 49 + 47 + 51 + 44 + 42 + 38) + (52*8) = 67

38 52

4335

47

49

42 44 51

8

-1

-1 -1-1

-1

-1 -1

-1 38 67

4335

47

49

42 44 51

* =

Figure 2-10. Convolution, in this case a sharpen filter: (Left to right) Image data, sharpen
filter, and resulting image data

A convolution operation is typically followed up with a set of postprocessing point
operations to clean up the data. Following are some useful postprocessing steps; many
more are suggested in the “Point Filters” section that follows later in the chapter.

switch (post_processor)
{
case RESULT_ASIS:
 break;
case RESULT_PLUS_VALUE:
 sum += value;
 break;

ChapteR 2 ■ Image pRe-pRoCessIng

59

case RESULT_MINUS_VALUE:
 sum -= value;
 break;
case RESULT_PLUS_ORIGINAL_TIMES_VALUE:
 sum = sum + (result * value);
 break;
case RESULT_MINUS_ORIGINAL_TIMES_VALUE:
 sum = sum - (result * value);
 break;
case ORIGINAL_PLUS_RESULT_TIMES_VALUE:
 sum = result + (sum * value);
 break;
case ORIGINAL_MINUS_RESULT_TIMES_VALUE:
 sum = result - (sum * value);
 break;
case ORIGINAL_LOW_CLIP:
 sum = (result < value ? value : result);
 break;
case ORIGINAL_HIGH_CLIP:
 sum = (result > value ? value : result);
 break;
}

switch (post_processing_sign)
{
case ABSOLUTE_VALUE:
 if (sum < 0) sum = -sum;
 if (sum > limit) sum = limit;
 break;
case POSITIVE_ONLY:
 if (sum < 0) sum = 0;
 if (sum > limit) sum = limit;
 break;
case NEGATIVE_ONLY:
 if (sum > 0) sum = 0;
 if (-sum > limit) sum = -limit;
 break;
case SIGNED:
 if (sum > limit) sum = limit;
 if (-sum > limit) sum = -limit;
 break;
}

ChapteR 2 ■ Image pRe-pRoCessIng

60

Convolution is used to implement a variety of common filters including:

•	 Gradient or sharpen filters, which amplify and detect maxima
and minima pixels. Examples include Laplacian.

•	 Edge or line detectors, where lines are connected gradients
that reveal line segments or contours. Edge or line detectors
can be steerable to a specific orientation, like vertical, diagonal,
horizontal, or omni-directional; steerable filters as basis sets are
discussed in Chapter 3.

•	 Smoothing and blur filters, which take neighborhood pixels.

Kernel Filtering and Shape Selection
Besides convolutional methods, kernels can be devised to capture regions of pixels
generically for statistical filtering operations, where the pixels in the region are sorted into
a list from low to high value. For example, assuming a 3x3 kernel region, we can devise
the following statistical filters:

sort(&kernel, &image, &coordinates, &sorted_list);

switch (filter_type)
case RANK_FILTER:
 // Pick highest pixel in the list, rank = 8 for a 3x3 kernel 0..8
 // Could also pick the lowest, middle, or other rank
 image[center_pixel] = sorted_list[rank];
 break;
case MEDIAN_FILTER:
 // Median value is kernel size / 2, (3x3=9)/2=4 in this case
 image[center_pixel] = sorted_list[median];
 break;
case MAJORITY_FILTER:
 // Find the pixel value that occurs most often, count sorted pixel values
 count(&sorted_list, &counted_list);
 image[center_pixel] = counted_list[0];
 break;
}

The rank filter is a simple and powerful method that sorts each pixel in the region
and substitutes a pixel of desired rank for the center pixel, such as substitution of the
highest pixel in the region for the center pixel, or the median value or the majority value.

ChapteR 2 ■ Image pRe-pRoCessIng

61

Shape Selection or Forming Kernels
Any regional operation can benefit from shape selection kernels to select pixels from
the region and exclude others. Shape selection, or forming, can be applied as a pre-
processing step to any image pre-processing algorithm or to any feature extraction
method. Shape selection kernels can be binary truth kernels to select which pixels from
the source image are used as a group, or to mark pixels that should receive individual
processing. Shape selection kernels, as shown in Figure 2-11, can be applied to local
feature descriptors and detectors also; similar but sometimes more complex local region
pixel selection methods are often used with local binary descriptor methods, as discussed
in Chapter 4.

F T

FT

F

T

T F T

Figure 2-11. Truth and shape kernels: (Left) A shape kernel gray kernel position indicating
a pixel to process or use—for example, a pixel to convolve prior to a local binary pattern
point-pair comparison detector.(Right) A truth shape kernel specifying pixels to use for
region average, favoring diagonals—T means use this pixel, F means do not use

Point Filtering
Individual pixel processing is typically overlooked when experimenting with image
pre-processing. Point processing is amenable to many optimization methods, as will
be discussed in Chapter 8. Convolution, as discussed above, is typically followed by
point postprocessing steps. Table 2-2 illustrates several common pixel point processing
methods in the areas of math operations, Boolean operations, and compare and
substitution operations, which seem obvious but can be quite valuable for exploring
image enhancement methods to enhance feature extraction.

ChapteR 2 ■ Image pRe-pRoCessIng

62

Table 2-2. Possible Point Operations

// Math ops // Compare & Substitution ops

NAMES math_ops[] = {

"src + value -> dst",

"src - value -> dst",

"src * value -> dst",

"src / value -> dst",

"(src + dst) * value -> dst",

"(src - dst) * value -> dst",

"(src * dst) * value -> dst",

"(src / dst) * value -> dst",

"sqroot(src) + value -> dst",

"src * src + value -> dst",

"exp(src) + value -> dst",

"log(src) + value -> dst",

"log10(src) + value -> dst",

"pow(src ^ value) -> dst",

"sin(src) + value -> dst",

"cos(src) + value -> dst",

"tan(src) + value -> dst",

"(value / max(all_src)) * src -> dst",

"src - mean(all_src) -> dst",

"absval(src) + value -> dst",

};

// Boolean ops
NAMES bool_ops[] = {

"src AND value -> dst",

"src OR value -> dst",

"src XOR value -> dst",

"src AND dst -> dst",

"src OR dst -> dst",

"src XOR dst -> dst",

"NOT(src) -> dst",

"LO_CLIP(src, value) -> dst",

"LO_CLIP(src, dst) -> dst",

"HI_CLIP(src, value) -> dst",

"HI_CLIP(src, dst) -> dst",

};

NAMES change_ops[] = {

"if (src = thresh) value -> dst",

"if (src = dst) value -> dst",

"if (src != thresh) value -> dst",

"if (src != thresh) src -> dst",

"if (src != dst) value -> dst",

"if (src != dst) src -> dst",

"if (src >=thresh) value -> dst",

"if (src >=thresh) src -> dst",

"if (src >=dst) value -> dst",

"if (src >=dst) src -> dst",

"if (src <= thresh) value -> dst",

"if (src <= thresh) src -> dst",

"if (src <= dst) value -> dst",

"if (src <= dst) src -> dst",

"if (lo <= src <= hi) value -> dst",

"if (lo <= src <= hi) src -> dst",

};

ChapteR 2 ■ Image pRe-pRoCessIng

63

Noise and Artifact Filtering
Noise is usually an artifact of the image sensor, but not always. There are several
additional artifacts that may be present in an image as well. The goal of noise removal is
to remove the noise without distorting the underlying image, and the goal of removing
artifacts is similar. Depending on the type of noise or artifact, different methods may be
employed for pre-processing. The first step is to classify the noise or artifact, and then to
devise the right image pre-processing strategy.

•	 Speckle, random noise. This type of noise is apparently random,
and can be removed using a rank filter or median filter.

•	 Transient frequency spike. This can be determined using a
Fourier spectrum and can be removed using a notch filter over
the spike; the frequency spike will likely be in an outlier region of
the spectrum, and may manifest as a bright spot in the image.

•	 Jitter and judder line noise. This is an artifact particular to video
streams, usually due to telecine artifacts, motion of the camera
or the image scene, and is complex to correct. It is primarily line
oriented rather than just single-pixel oriented.

•	 Motion blur. This can be caused by uniform or nonuniform
motion and is a complex problem; several methods exist for
removal; see reference[305].

Standard approaches to noise removal are discussed by Gonzalez[4]. The most basic
approach is to remove outliers, and various approaches are taken, including thresholding
and local region based statistical filters such as the rank filter and median filter. Weighted
image averaging is also sometime used for removing noise from video streams; assuming
the camera and subjects are not moving, it can work well. Although deblurring or
Gaussian smoothing convolution kernels are sometimes used to remove noise, such
methods may cause smearing and may not be the best approach.

A survey of noise-removal methods and a performance comparison model are
provided by Buades et al.[511]. This source includes a description of the author’s
NL-means method, which uses nonlocal pixel value statistics in addition to Euclidean
distance metrics between similar weighted pixel values over larger image regions to
identify and remove noise.

Integral Images and Box Filters
Integral images are used to quickly find the average value of a rectangular group of
pixels. An integral image is also known as a summed area table, where each pixel in the
integral image is the integral sum of all pixels to the left and above the current pixel. The
integral image can be calculated quickly in a single pass over the image. Each value in
the summed area table is calculated using the current pixel value from the image i(n,m)
combined with previous entries s(n,m) made into the summed area table, as follows:

s(x,y) = i(x,y) + s(x-1,y) + s(x,y-1) - s(x-1,y-1)

ChapteR 2 ■ Image pRe-pRoCessIng

64

As shown in Figure 2-12, to find a HAAR rectangle feature value from the integral
image, only four points in the integral image table A,B,C,D are used, rather than tens or
hundreds of points from the image. The integral image sum of a rectangle region can
then be divided by the size of the rectangle region to yield the average value, which is also
known as a box filter.

Figure 2-12. (Left) Pixels in an image. (Center) Integral image. (Right) Region where a box
filter value is computed from four points in the integral image: sum = s(A) + s(D) – s(B) – s(C)

Integral images and box filters are used in many computer vision methods, such as
HAAR filters and feature descriptors. Integral images are also used as a fast alternative to
a Gaussian filter of a small region, as a way to lower compute costs. In fact, descriptors
with a lot of overlapping region processing, such as BRISK [131], make effective use
of integral images for descriptor building and use integral images as a proxy for a fast
Gaussian blur or convolution.

Edge Detectors
The goal of an edge detector is to enhance the connected gradients in an image, which
may take the form of an edge, contour, line, or some connected set of edges. Many edge
detectors are simply implemented as kernel operations, or convolutions, and we survey
the common methods here.

Kernel Sets: Sobel, Scharr, Prewitt, Roberts, Kirsch,
Robinson, and Frei-Chen
The Sobel operator detects gradient magnitude and direction for edge detection.
The basic method is shown here.

ChapteR 2 ■ Image pRe-pRoCessIng

65

1. Perform two directional Sobel filters (x and y axis) using basic
derivative kernel approximations such as 3x3 kernels, using
values as follows:

2.

Sy =
- - -é

ë

ê
ê
ê

ù

û

ú
ú
ú

.

1 2 1

0 0 0

1 2 1

Sx =
-
-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

.

1 0 1

2 0 2

1 0 1

3. Calculate the total gradient as G
v
= |S

x
| + |S

y
|

4. Calculate the gradient direction as theta = ATAN (S
y
/S

x
)

5. Calculate gradient magnitude Gm = +Sy Sx2 2

Variations exist in the area size and shape of the kernels used for Sobel edge
detection. In addition to the Sobel kernels shown above, other similar kernel sets are used
in practice, so long as the kernel values cancel and add up to zero, such as those kernels
proposed by Scharr, Prewitt, Roberts, Robinson, and Frei-Chen, as well as Laplacian
approximation kernels. The Frei-Chen kernels are designed to be used together at a set,
so the edge is the weighted sum of all the kernels. See reference[4] for more information
on edge detection masks. Some kernels have compass orientations, such as those
developed by Kirsch, Robinson, and others. See Figure 2-13.

ChapteR 2 ■ Image pRe-pRoCessIng

66

Canny Detector
The Canny method [154] is similar to the Sobel-style gradient magnitude and direction
method, but it adds postprocessing to clean up the edges.

1. Perform a Gaussian blur over the image using a selected
convolution kernel (7x7, 5,5, etc.), depending on the level of
low-pass filtering desired.

2. Perform two directional Sobel filters (x & y axis).

Figure 2-13. Several edge detection kernel masks

ChapteR 2 ■ Image pRe-pRoCessIng

67

3. Perform nonmaximal value suppression in the direction of
the gradient to set to zero (0) pixels not on an edge (minima
values).

4. Perform hysteresis thresholding within a band (high,low) of
values along the gradient direction to eliminate edge aliasing
and outlier artifacts and to create better connected edges.

Transform Filtering, Fourier, and Others
This section deals with basis spaces and image transforms in the context of image
filtering, the most common and widely used being the Fourier transform. A more
comprehensive treatment of basis spaces and transforms in the context of feature
description is provided in Chapter 3. A good reference for transform filtering in the
context of image processing is provided by Pratt [9].

Why use transforms to switch domains? To make image pre-processing easier
or more effective, or to perform feature description and matching more efficiently. In
some cases, there is no better way to enhance an image or describe a feature than by
transforming it to another domain—for example, for removing noise and other structural
artifacts as outlier frequency components of a Fourier spectrum, or to compact describe
and encode image features using HAAR basis features.

Fourier Transform Family
The Fourier transform is very well known and covered in the standard reference by
Bracewell [227], and it forms the basis for a family of related transforms. Several methods
for performing fast Fourier transform (FFT) are common in image and signal processing
libraries. Fourier analysis has touched nearly every area of world affairs, through
science, finance, medicine, and industry, and has been hailed as “the most important
numerical algorithm of our lifetime” [290]. Here, we discuss the fundamentals of Fourier
analysis, and a few branches of the Fourier transform family with image pre-processing
applications.

The Fourier transform can be computed using optics, at the speed of light [516].
However, we are interested in methods applicable to digital computers.

Fundamentals
The basic idea of Fourier analysis [227,4,9] is concerned with decomposing periodic
functions into a series of sine and cosine waves (Figure 2-14). The Fourier transform is
bi-directional, between a periodic wave and a corresponding series of harmonic basis
functions in the frequency domain, where each basis function is a sine or cosine function,
spaced at whole harmonic multiples from the base frequency. The result of the forward
FFT is a complex number composed of magnitude and phase data for each sine and
cosine component in the series, also referred to as real data and imaginary data.

ChapteR 2 ■ Image pRe-pRoCessIng

68

Figure 2-14. (Left) Harmonic series of sine waves. (Right) Fourier harmonic series of sine
and cosine waves

Arbitrary periodic functions can be synthesized by summing the desired set of
Fourier basis functions, and periodic functions can be decomposed using the Fourier
transform into the basic functions as a Fourier series. The Fourier transform is invertible
between the time domain of discrete pixels and the frequency domain, where both
magnitude and phase of each basis function are available for filtering and analysis,
magnitude being the most commonly used component.

How is the FFT implemented for 2D images or 3D volumes? The Fourier transform
is a separable transform and so can be implemented as a set of parallel 1D FFT line
transforms (Figure 2-15). So, for 2D images and 3D volumes, each dimension, such as
the x, y, z dimension, can be computed in place, in parallel as independent x lines, then
the next dimension or y columns can be computed in place as parallel lines, then the z
dimension can be computed as parallel lines in place, and the final results are scaled
according to the transform. Any good 1D FFT algorithm can be set up to process 2D
images or 3D volumes using parallelization.

Figure 2-15. Fourier series and Fourier transform concepts showing a square wave
approximated from a series of Fourier harmonics

ChapteR 2 ■ Image pRe-pRoCessIng

69

For accuracy of the inverse transform to go from frequency space back to pixels,
the FFT computations will require two double precision 64-bit floating point buffers to
hold the magnitude and phase data, since transcendental functions such as sine and
cosine require high floating point precision for accuracy; using 64-bit double precision
floating point numbers for the image data allows a forward transform of an image to be
computed, followed by an inverse transform, with no loss of precision compared to the
original image—of course, very large images will need more than double precision.

Since 64-bit floating point is typically slower and of higher power, owing to the
increased compute requirements and silicon real estate in the ALU, as well as the heavier
memory bandwidth load, methods for FFT optimization have been developed using integer
transforms, and in some cases fixed point, and these are good choices for many applications.

Note in Figure 2-16 that the low-pass filter (center right) is applied to preserve
primarily low-frequency information toward the center of the plot and it reduces
high-frequency components toward the edges, resulting in the filtered image at the far right.

Figure 2-16. Basic Fourier filtering: (Left) Original. (Center left) Fourier spectrum. (Center
right) Low-pass filter shape used to multiply against Fourier magnitude. (Right) Inverse
transformed image with low-pass filter

A key Fourier application is filtering, where the original image is forward-
transformed into magnitude and phase; the magnitude component is shown as a Fourier
power spectrum of the magnitude data, which reveals structure in the image as straight
lines and blocks, or outlier structures or spots that are typically noise. The magnitude can
be filtered by various filter shapes, such as high-pass, low-pass, band pass, and spot filters
to remove spot noise, to affect any part of the spectrum.

In Figure 2-16, a circular symmetric low-pass filter shape is shown with a smooth
distribution of filter coefficients from 1 to 0, with high multiplicands in the center at the
low frequencies, ramping down to zero toward the high frequencies at the edge. The
filter shape is multiplied in the frequency domain against the magnitude data to filter
out the higher frequency components, which are toward the outside of the spectrum
plot, followed by an inverse FFT to provide the filtered image. The low-frequency
components are toward the center; typically these are most interesting and so most of
the image power is contained in the low-frequency components. Any other filter shape
can be used, such as a spot filter, to remove noise or any of the structure at a specific
location of the spectrum.

ChapteR 2 ■ Image pRe-pRoCessIng

70

Fourier Family of Transforms
The Fourier transform is the basis for a family of transforms [4], some of which are:

1. DFT, FFT. The discrete version of the Fourier transform, often
implemented as a fast version, or FFT, commonly used for
image processing. There are many methods of implementing
the FFT [227].

2. Sine transform. Fourier formulation composed of only sine
terms.

3. Cosine transform. Fourier formulation composed of only
cosine terms.

4. DCT, DST, MDCT. The discrete Fourier transform is
implemented in several formulations: discrete sine transform
(DST), discrete cosine transform (DCT), and the modified
discrete cosine transform (MDCT). These related methods
operate on a macroblock, such as 16x16 or 8x8 pixel region,
and can therefore be highly optimized for compute use
with integers rather than floating point. Typically the DCT
is implemented in hardware for video encode and decode
applications for motion estimation of the macro blocks
from frame to frame. The MDCT operates on overlapping
macroblock regions for compute efficiency.

5. Fast Hartley transform, DHT. This was developed as an
alternative formulation of the Fourier transform for telephone
transmission analysis about 1925, forgotten for many years,
then rediscovered and promoted again by Bracewell[227] as an
alternative to the Fourier transform. The Hartley transform is a
symmetrical formulation of the Fourier transform, decomposing
a signal into two sets of sinusoidal functions taken together
as a cosine-and-sine or cas() function, where cas(vx) ∫ cos(vx)
+ sin(vx). This includes positive and negative frequency
components and operates entirely on real numbers for input
and output. The Hartley formulation avoids complex numbers as
used in the Fourier complex exponential exp (j w x). The Hartley
tansform has been developed into optimized versions called the
DHT, shown to be about equal in speed to an optimized FFT.

Other Transforms
Several other transforms may be used for image filtering, including wavelets, steerable filter
banks, and others that will be described in Chapter 3, in the context of feature description.
Note that transforms often have many common uses and applications that overlap, such as
image description, image coding, image compression, and feature description.

ChapteR 2 ■ Image pRe-pRoCessIng

71

Morphology and Segmentation
For simplicity, we define the goal of morphology as shape and boundary definition, and
the goal of segmentation is to define regions with internal similarity, such as textural or
statistical similarity. Morphology is used to identify features as polygon shaped regions that
can be described with shape metrics, as will be discussed in Chapters 3 and 6, distinct from
local interest point and feature descriptors using other methods. An image is segmented
into regions to allow independent processing and analysis of each region according to
some policy or processing goal. Regions cover an area smaller than the global image but
usually larger than local interest point features, so an application might make use of global,
regional, and small local interest point metrics together as an object signature.

An excellent review of several segmentation methods can be found in work by
Haralick and Shapiro[321]. In practice, segmentation and morphology are not easy:
results are often less useful than expected, trial and error is required, too many methods
are available to provide any strict guidance, and each image is different. So here we only
survey the various methods to introduce the topic and illustrate the complexity. An
overview of region segmentation methods is shown in Table 2-3.

Table 2-3. Segmentation Methods

Method Description

Morphological segmentation The region is defined based on thresholding and
morphology operators.

Texture-based segmentation The texture of a region is used to group like textures
into connected regions.

Transform-based
segmentation

Basis space features are used to segment the image.

Edge boundary segmentation Gradients or edges alone are used to define the
boundaries of the region with edge linking in some
cases to form boundaries.

Color segmentation Color information is used to define regions.

Super-Pixel Segmentation Kernels and distance transforms are used to group
pixels and change their values to a common value.

Gray scale / luminance
segmentation

Gray scale thresholds or bands are used to define the
regions.

Depth segmentation Depth maps and distance from viewer is used to
segment the image into foreground, background, or
other gradations of inter-scene features.

ChapteR 2 ■ Image pRe-pRoCessIng

72

Binary Morphology
Binary morphology operates on binary images, which are created from other scalar
intensity channel images. Morphology [9] is used to morph a feature shape into a
new shape for analysis by removing shape noise or outliers, and by strengthening
predominant feature characteristics. For example, isolated pixels may be removed using
morphology, thin features can be fattened, and the predominant shape is still preserved.
Note that morphology all by itself is quite a large field of study, with applications to
general object recognition, cell biology, medicine, particle analysis, and automated
microscopy. We introduce the fundamental concepts of morphology here for binary
images, and then follow this section with applications to gray scale and color data.

Binary morphology starts with binarizing images, so typically thresholding is first
done to create images with binary-valued pixels composed of 8-bit black and white
values, 0-value = black and 255-value = white. Thresholding methods are surveyed later in
this chapter, and thresholding is critical prior to morphology.

Binary morphology is a neighborhood operation, and can use a forming kernel with
truth values, as shown in Figure 2-17. The forming kernel guides the morphology process
by defining which surrounding pixels contribute to the morphology. Figure 2-17 shows
two forming kernels: kernel a, where all pixels touching the current pixel are considered,
and kernel b, where only orthogonally adjacent pixels are considered.

Figure 2-17. 3x3 forming kernels and binary erosion and dilation using the kernels;
other kernel sizes and data values may be useful in a given application. (Image used by
permission, © Intel Press, from Building Intelligent Systems)

ChapteR 2 ■ Image pRe-pRoCessIng

73

The basic operations of morphology include Boolean AND, OR, NOT. The notation
used for the fundamental morphological operations is for dilation and for erosion. In
binary morphology, dilation is a Boolean OR operator, while erosion is a Boolean AND
operator. In the example provided in Figure 2-17, only kernel elements with a “1” are used
in the morphology calculation, allowing for neighborhood contribution variations. For
erosion, the pixels under all true forming kernel elements are AND’d together; the result is 1
if all are true and the pixel feature remains, otherwise the pixel feature is eroded or set to 0.

All pixels under the forming true kernel must be true for erosion of the center pixel.
Erosion attempts to reduce sparse features until only strong features are left. Dilation
attempts to inflate sparse features to make them fatter, only 1 pixel under the forming
kernel elements must be true for dilation of the center pixel, corresponding to Boolean OR.

Based on simple erosion and dilation, a range of morphological operations are
derived as shown here, where = dilation and = erosion.

Erode G(f) = f b
Dilate G(f) = f b

Opening G(f) = (f b) b

Closing G(f) = (f b) b

Morphological Gradient G(f) = f b or G(f) = f b – f b

Morphological Internal gradient G i(f) = f - f b

Morphological External gradient G e(f) = f b - f

Gray Scale and Color Morphology
Gray scale morphology is useful to synthesize and combine pixels into homogeneous
intensity bands or regions with similar intensity values. Gray scale morphology can
be used on individual color components to provide color morphology affecting hue,
saturation, and color intensity in various color spaces.

For gray scale morphology or color morphology, the basic operations are MIN, MAX,
and MINMAX, where pixels above the MIN are changed to the same value and pixels below
the MAX are changed to the same value, while pixels within the MINMAX range are changed
to the same value. MIN and MAX are a form of thresholding, while MINMAX allows bands of
pixel values to be coalesced into equal values forming a homogenous region.

Morphology Optimizations and Refinements
Besides simple morphology [9], there are other methods of morphological segmentation
using adaptive methods [254,255,256]. The simple morphology methods rely on using
a fixed kernel across the entire image at each pixel and assume the threshold is already
applied to the image; while the adaptive methods combine the morphology operations
with variable kernels and variable thresholds based on the local pixel intensity statistics.
This allows the morphology to adapt to the local region intensity and, in some cases,
produce better results. Auto-thresholding and adaptive thresholding methods are
discussed later in this chapter and are illustrated in Figures 2-24 and 2-26.

ChapteR 2 ■ Image pRe-pRoCessIng

74

Super-Pixel Segmentation
A super-pixel segmentation method [257,258,259,260,261] attempts to collapse similar
pixels in a local region into a larger super-pixel region of equal pixel value, so similar values
are subsumed into the larger super-pixel. Super-pixel methods are commonly used for
digital photography applications to create a scaled or watercolor special effect. Super-pixel
methods treat each pixel as a node in a graph, and edges between regions are determined
based on the similarity of neighboring pixels and graph distance. See Figure 2-19.

Euclidean Distance Maps
The distance map, or Euclidean distance map (EDM), converts each pixel in a binary
image into the distance from each pixel to the nearest background pixel, so the EDM
requires a binary image for input. The EDM is useful for segmentation, as shown in
Figure 2-18, where the EDM image is thresholded based on the EDM values—in this case,
similar to the ERODE operator.

Figure 2-18. Pre-processing sequence: (Left) Image after thresholding and erosion.
(Center) EDM showing gray levels corresponding to distance of pixel to black background.
(Right) Simple binary thresholded EDM image

Figure 2-19. Comparison of various super-pixel segmentation methods
(Image © Dr. Radhakrishna Achanta, used by permission)

Feature descriptors may be devised based on super-pixels, including super-pixel value
histograms, shape factors of each polygon shaped super-pixel, and spatial relationships of
neighboring super-pixel values. Apparently little work has been done on super-pixel based
descriptors; however, the potential for several degrees of robustness and invariance seems
good. We survey a range of super-pixel segmentation methods next.

ChapteR 2 ■ Image pRe-pRoCessIng

75

Graph-based Super-Pixel Methods
Graph-based methods structure pixels into trees based on the distance of the pixel
from a centroid feature or edge feature for a region of like-valued pixels. The compute
complexity varies depending on the method.

•	 SLIC Method [258] Simple Linear Iterative Clusting (SLIC) creates
super-pixels based on a 5D space, including the CIE Lab color
primaries and the XY pixel coordinates. The SLIC algorithm takes
as input the desired number of super-pixels to generate and adapt
well to both gray scale and RGB color images. The clustering
distance function is related to the size of the desired number of
super-pixels and uses a Euclidean distance function for grouping
pixels into super-pixels.

•	 Normalized Cuts [262,263] Uses a recursive region partitioning
method based on local texture and region contours to create
super-pixel regions.

•	 GS-FH Method [264] The graph-based Felzenszwalb and
Huttenlocher method attempts to segment image regions using
edges based on perceptual or psychological cues. This method
uses the minimum length between pixels in the graph tree
structure to create the super-pixel regions. The computational
complexity is O(n Log n), which is relatively fast.

•	 SL Method [265] The Super-Pixel Lattice (SL) method finds
region boundaries within tiled image regions or strips of pixels
using the graph cut method.

Gradient-Ascent-Based Super-Pixel Methods
Gradient ascent methods iteratively refine the super-pixel clusters to optimize the
segmentation until convergence criteria are reached. These methods use a tree graph
structure to associate pixels together according to some criteria, which in this case may
be the RGB values or Cartesian coordinates of the pixels, and then a distance function
or other function is applied to create regions. Since these are iterative methods, the
performance can be slow.

•	 Mean-Shift [266] Works by registering off of the region centroid
based on a kernel-based mean smoothing approach to create
regions of like pixels.

•	 Quick-Shift [267] Similar to the mean-shift method but does
not use a mean blur kernel and instead uses a distance function
calculated from the graph structure based on RGB values and XY
pixel coordinates.

ChapteR 2 ■ Image pRe-pRoCessIng

76

•	 Watershed [268] Starts from local region pixel value minima
points to find pixel value-based contour lines defining
watersheds, or basin contours inside which similar pixel values
can be substituted to create a homogeneous pixel value region.

•	 Turbopixels [269] Uses small circular seed points placed in
a uniform grid across the image around which super-pixels
are collected into assigned regions, and then the super-pixel
boundaries are gradually expanded into the unassigned region,
using a geometric flow method to expand the boundaries using
controlled boundary value expansion criteria, so as to gather
more pixels together into regions with fairly smooth and uniform
geometric shape and size.

Depth Segmentation
Depth information, such as a depth map as shown in Figure 2-20, is ideal for segmenting
objects based on distance. Depth maps can be computed from a wide variety of depth
sensors and methods, including a single camera, as discussed in Chapter 1. Depth
cameras, such as the Microsoft Kinect camera, are becoming more common. A depth
map is a 2D image or array, where each pixel value is the distance or Z value.

Figure 2-20. Depth images from Middlebury Data set: (Left) Original image. (Right)
Corresponding depth image. Data courtesy of Daniel Scharstein and used by permission

Many uncertainties in computer vision arise out of the problems in locating three-
dimensional objects in a two-dimensional image array, so adding a depth map to the
vision pipeline is a great asset. Using depth maps, images can be easily segmented
into the foreground and background, as well as be able to segment specific features or
objects—for example, segmenting by simple depth thresholding.

Depth maps are often very fuzzy and noisy, depending on the depth sensing method,
so image pre-processing may be required. However, there is no perfect filtering method
for depth map cleanup. Many practitioners prefer the bi-lateral filter [302] and variants,
since it preserves local structure and does a better job of handling the edge transitions.

ChapteR 2 ■ Image pRe-pRoCessIng

77

Color Segmentation
Sometime color alone can be used to segment and threshold. Using the right color
component can easily filter out features from an image. For example, in Figure 2-6, we
started from a red channel image from an RGB set, and the goal was to segment out the
USB sticks from the table background. Since the table is brown and contains a lot of red,
the red channel provides useful contrast with the USB sticks allowing segmentation via
red. It may be necessary to color-correct the image to get the best results, such as gamut
corrections or boosting the hue or saturation of each color to accentuate difference.

Thresholding
The goal of thresholding is to segment the image at certain intensity levels to reveal
features such as foreground, background, and specific objects. A variety of methods
exist for thresholding, ranging from global to locally adaptive. In practice, thresholding
is very difficult and often not satisfactory by itself, and must be tuned for the dataset and
combined with other pre-processing methods in the vision pipeline.

One of the key problems in thresholding is nonuniform illumination, so applications
that require thresholding, like cell biology and microscopy, pay special attention to cell
preparation, specimen spacing, and light placement. Since many images do not respond
well to global thresholding involving simple methods, local methods are often required,
which use the local pixel structure and statistical relationships to create effective
thresholds. Both global and local adaptive methods for thresholding are discussed here.
A threshold can take several forms:

•	 Floor Lowest pixel intensity allowed

•	 Ceiling Highest pixel intensity allowed

•	 Ramp Shape of the pixel ramp between floor and ceiling, such as
linear or log

•	 Point May be a binary threshold point with no floor, ceiling, or ramp

Global Thresholding
Thresholding entire images at a globally determined thresholding level is sometimes a
good place to start to explore the image data, but typically local features will suffer and
be unintelligible as a result. Thresholding can be improved using statistical methods to
determine the best threshold levels. Lookup tables (LUT) can be constructed, guided by
statistical moments to create the floor, ceiling, and ramps and the functions to perform
rapid LUT processing on images, or false-color the images for visualization.

ChapteR 2 ■ Image pRe-pRoCessIng

78

Histogram Peaks and Valleys, and Hysteresis Thresholds
Again we turn to the old stand-by, the image histogram. Peaks and valleys in the
histogram may indicate thresholds useful for segmentation and thresholding [319].
A hysteresis region marks pixels with similar values, and is easy to spot in the histogram,
as shown in Figure 2-21. Also, many image processing programs have interactive sliders
to allow the threshold point and even regions to be set with the pointer device.1 Take
some time and get to know the image data via the histogram and become familiar with
using interactive thresholding methods.

Figure 2-21. Histogram annotated with arrows showing peaks and valleys, and dotted
lines showing regions of similar intensities defined using hysteresis thresholds

If there are no clear valleys between the histogram peaks, then establishing two
thresholds, one on each side of the valley, is a way to define a region of hysteresis. Pixel
values within the hysteresis region are considered inside the object. Further, the pixels
can be classified together as a region using the hysteresis range and morphology to
ensure region connectivity.

LUT Transforms, Contrast Remapping
Simple lookup tables (LUTs) are very effective for contrast remapping and global
thresholding, and interactive tools can be used to create the LUTs. Once the interactive
experimentation has been used to find the best floor, ceiling, and ramp function, the LUTs
can be generated into table data structures and used to set the thresholds in fast code.
False-coloring the image using pseudo-color LUTs is common and quite valuable for
understanding the thresholds in the data. Various LUT shapes and ramps can be devised.
See Figure 2-22 for an example using a linear ramp function.

1See the open-source package ImageJ2, and menu item Image ➤ Adjust-Brightness/Contrast for
interactive thresholding.

ChapteR 2 ■ Image pRe-pRoCessIng

79

Figure 2-22. Contrast corrections: (Left) Original image shows palm frond detail
compressed into a narrow intensity range obscuring details. (Center) Global histogram
equalization restores some detail. (Right) LUT remap function spreads the intensity values
to a narrower range to reveal details of the palm fronds. The section of the histogram
under the diagonal line is stretched to cover the full intensity range in the right image;
other intensity regions are clipped. The contrast corrected image will yield more gradient
information when processed with a gradient operator such as Sobel

Histogram Equalization and Specification
Histogram equalization spreads pixel values between a floor and ceiling using a contrast
remapping function, with the goal of creating a histogram with approximately equal bin
counts approaching a straight-line distribution. See Figure 2-23. While this method works
well for gray scale images, color images should be equalized in the intensity channel of
a chosen color space, such as HSV V. Equalizing each RGB component separately and
rerendering will produce color moiré artifacts. Histogram equalization uses a fixed region
and a fixed remapping for all pixels in the region; however, adaptive local histogram
equalization methods are available [314].

Figure 2-23. (Left) Original image and histogram. (Right) Histogram equalized image
and histogram

ChapteR 2 ■ Image pRe-pRoCessIng

80

It is possible to create a desired histogram shape or value distribution, referred to
as histogram specification, and then remap all pixel values from the source image to
conform to the specified histogram shape. The shape may be created directly, or else the
histogram shape from a second image may be used to remap the source image to match
the second image. With some image processing packages, the histogram specification
may be interactive, and points on a curve may be placed and adjusted to create the
desired histogram shape.

Global Auto Thresholding
Various methods have been devised to automatically find global thresholds based
on statistical properties of the image histogram [320,513,514,515] and in most cases
the results are not very good unless some image pre-processing precedes the auto
thresholding. Table 2-4 provides a brief survey of auto thresholding methods, while
Figure 2-24 displays renderings of each method.

Table 2-4. Selected Few Global Auto-Thresholding Methods Derived from Basic Histogram
Features [303]

Method Description

Default A variation of the IsoData method, also knowm as iterative intermeans.

Huang Huang’s method of using fuzzy thresholding.

Intermodes Iterative histogram smoothing.

IsoData Iterative pixel averaging of values above and below a threshold to derive
a new threshold above the composite average.

Li Iterative cross-entropy thresholding.

MaxEntropy Kapur-Sahoo-Wong (Maximum Entropy) algorithm.

Mean Uses mean gray level as the threshold.

MinError Iterative method from Kittler and Illingworth to converge on a
minimum error threshold.

Minimum Iterative histogram smoothing, assuming a bimodal histogram.

Moments Tsai’s thresholding algorithm intending to threshold and preserve the
original image moments.

Otsu Otsu clustering algorithms to set local thresholds by minimizing
variance.

Percentile Adapts the threshold based on pre-set allocations for foreground and
background pixels.

RenyiEntropy Another entropy-based method.

Shanbhag Uses fuzzy set metrics to set the threshold.

Triangle Uses image histogram peak, assumes peak is not centered, sets
threshold in largest region on either side of peak.

ChapteR 2 ■ Image pRe-pRoCessIng

81

Figure 2-24. Renderings of selected auto-thresholding methods (Images generated using
ImageJ auto threshold plug-ins [303])

Local Thresholding
Local thresholding methods take input from the local pixel region and threshold each
pixel separately. Here are some common and useful methods.

Local Histogram Equalization
Local histogram equalization divides the image into small blocks, such as 32x32 pixels,
and computes a histogram for each block, then rerenders each block using histogram
equalization. However, the contrast results may contain block artifacts corresponding
to the chosen histogram block size. There are several variations for local histogram
equalization, including Contrast Limited Adaptive Local Histogram Equalization
(CLAHE) [304].

Integral Image Contrast Filters
A histogram-related method uses integral images to compute local region statistics
without the need to compute a histogram, then pixels are remapped accordingly, which is
faster and achieves a similar effect (Figure 2-25).

ChapteR 2 ■ Image pRe-pRoCessIng

82

2See the open-source package Imagej2, menu item Image ➤ Adjust ➤ Auto Local Threshold | Auto
Threshold.

Figure 2-25. Integral image filter from ImageJ to remap contrast in local regions, similar to
histogram equalization: (Left) Original. (Center) 20x20 regions. (Right) 40x40 regions

Local Auto Threshold Methods
Local thresholding adapts the threshold based on the immediate area surrounding each
target pixel in the image, so local thresholding is more like a standard area operation or
filter [513,514,515]. Local auto thresholding methods are available in standard software
packages.2 Figure 2-26 provides some example adaptive local thresholding methods,
summarized in Table 2-5.

Figure 2-26. Renderings of a selected few local auto and local thresholding methods using
ImageJ plug-ins [303]

ChapteR 2 ■ Image pRe-pRoCessIng

83

Summary
In this chapter, we surveyed image processing as a pre-processing step that can improve
image analysis and feature extraction. We developed a taxonomy of image processing
methods to frame the discussion, and applied the taxonomy to examples in the four
fundamental vision pipelines, as will be developed in the taxonomy of Chapter 5,
including (1) local binary descriptors such as LBP, ORB, FREAK; (2) spectra descriptors
such as SIFT, SURF; (3) basis space descriptors such as FFT, wavelets; and (4) polygon
shape descriptors such as blob object area, perimeter, and centroid. Common problems
and opportunities for image pre-processing were discussed. Starting with illumination,
noise, and artifact removal, we covered a range of topics including segmentation
variations such as depth segmentation and super-pixel methods, binary, gray scale and
color morphology, spatial filtering for convolutions and statistical area filters, and basis
space filtering.

Table 2-5. Selected Few Local Auto-thresholding Methods [303]

Method Description

Bernsen Bernsen’s algorithm using circular windows instead of rectangles and
local midgray values

Mean Uses the local gray level mean as the threshold

Median Uses the local gray level mean as the threshold

MidGrey Uses the local area gray level mean - C (where C is a constant)

Niblack Niblack’s algorithm is:
p = (p > mean + k * standard_deviation - c) ? object : background

Sauvola Sauvola’s variation of Niblack:
p = (p > mean * (1 + k *(standard_deviation / r - 1))) ? object : background

