Bookmark and Share

"Methods for Creating Efficient Convolutional Neural Networks," a Presentation from Xnor.ai

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:


Mohammad Rastegari, Chief Technology Officer at Xnor.ai, presents the "Methods for Creating Efficient Convolutional Neural Networks" tutorial at the May 2019 Embedded Vision Summit.

In the past few years, convolutional neural networks (CNNs) have revolutionized several application domains in AI and computer vision. The biggest challenge with state-of-the-art CNNs is the massive compute demands that prevent these models from being used in many embedded systems and other resource-constrained environments.

In this talk, Rastegari explains and contrasts several recent techniques that enable CNN models with high accuracy to consume very little memory and processor resources. These methods include a variety of algorithmic and optimization approaches to deep learning models. Quantization, sparsification and compact model design are three of the major techniques for efficient CNNs, which are discussed in the context of computer vision applications including detection, recognition and segmentation.

dseebran
Offline
Last seen: 13 weeks 3 days ago
Level 1: Prestidigitator
Joined: 2016-01-17
Points: 1

Computational Digital Signal Processing (1D, 2D).