Bookmark and Share

"Five+ Techniques for Efficient Implementation of Neural Networks," a Presentation from Synopsys

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:


Bert Moons, Hardware Design Architect at Synopsys, presents the "Five+ Techniques for Efficient Implementation of Neural Networks" tutorial at the May 2019 Embedded Vision Summit.

Embedding real-time, large-scale deep learning vision applications at the edge is challenging due to their huge computational, memory and bandwidth requirements. System architects can mitigate these demands by modifying deep neural networks (DNNs) to make them more energy- efficient and less demanding of embedded processing hardware.

In this talk, Moons provides an introduction to today’s established techniques for efficient implementation of DNNs: advanced quantization, network decomposition, weight pruning and sharing and sparsity-based compression. He also previews up-and-coming techniques such as trained quantization and correlation- based compression.