Bookmark and Share

"Deploying Deep Learning Models on Embedded Processors for Autonomous Systems with MATLAB," a Presentation from MathWorks

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:


Sandeep Hiremath, Product Manager, and Bill Chou, Senior Computer Vision Scientist, both of MathWorks, present the "Deploying Deep Learning Models on Embedded Processors for Autonomous Systems with MATLAB" tutorial at the May 2019 Embedded Vision Summit.

In this presentation, Hiremath and Chou explain how to bring the power of deep neural networks to memory- and power-constrained devices like those used in robotics and automated driving. The workflow starts with an algorithm design in MATLAB, which enjoys universal appeal among engineers and scientists because of its expressive power and ease of use. The algorithm may employ deep learning networks augmented with traditional computer vision techniques and can be tested and verified within MATLAB.

Next, the networks are trained using MATLAB’s GPU and parallel computing support either on the desktop, a local compute cluster or in the cloud. In the deployment phase, code generation tools are employed to automatically generate optimized code that can target both embedded GPUs like Jetson, Jetson Drive AGX Xavier, Intel-based CPU platforms or ARM-based embedded platforms. The generated code leverages target-specific libraries that are highly optimized for the target architecture and memory model.