Bookmark and Share

"Training CNNs for Efficient Inference," a Presentation from Imagination Technologies

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:


Paul Brasnett, Principal Research Engineer at Imagination Technologies, presents the "Training CNNs for Efficient Inference" tutorial at the May 2017 Embedded Vision Summit.

Key challenges to the successful deployment of CNNs in embedded markets are in addressing the compute, bandwidth and power requirements. Typically, for mobile devices, the problem lies in the inference, since the training is currently handled offline. One approach to reducing the inference cost is to take a trained network and use a tool to map it to a lower cost representation by, for example, reducing the precision of the weights. Better inference performance can be obtained if the cost reduction is integrated into the network training process. In this talk, Brasnett explores some of the techniques and processes that can be used during training to optimize the CNN inference performance, along with a case study to illustrate the advantages of such an approach.