Bookmark and Share

"Separable Convolutions for Efficient Implementation of CNNs and Other Vision Algorithms," a Presentation from Phiar

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:


Chen-Ping Yu, Co-founder and CEO of Phiar, presents the "Separable Convolutions for Efficient Implementation of CNNs and Other Vision Algorithms" tutorial at the May 2019 Embedded Vision Summit.

Separable convolutions are an important technique for implementing efficient convolutional neural networks (CNNs), made popular by MobileNet’s use of depthwise separable convolutions. But separable convolutions are not a new concept, and their utility is not limited to CNNs. Separable convolutions have been widely studied and employed in classical computer vision algorithms as well, in order to reduce computation demands.

We begin this talk with an introduction to separable convolutions. We then explore examples of their application in classical computer vision algorithms and in efficient CNNs, comparing some recent neural network models. We also examine practical considerations of when and how to best utilize separable convolutions in order to maximize their benefits.