Bookmark and Share

"APIs for Accelerating Vision and Inferencing: An Industry Overview of Options and Trade-offs," a Presentation from the Khronos Group

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:

Neil Trevett, President of the Khronos Group and Vice President at NVIDIA, presents the "APIs for Accelerating Vision and Inferencing: An Industry Overview of Options and Trade-offs" tutorial at the May 2019 Embedded Vision Summit.

The landscape of SDKs, APIs and file formats for accelerating inferencing and vision applications continues to evolve rapidly. Low-level compute APIs, such as OpenCL, Vulkan and CUDA are being used to accelerate inferencing engines such as OpenVX, CoreML, NNAPI and TensorRT, being fed by neural network file formats such as NNEF and ONNX.

Some of these APIs, like OpenCV, are vision-specific, while others, like OpenCL, are general-purpose. Some engines, like CoreML and TensorRT, are supplier-specific, while others such as OpenVX, are open standards that any supplier can adopt. Which ones should you use for your project? Trevett answers these and other questions in this presentation.