Bookmark and Share

"Introduction to Creating a Vision Solution in the Cloud," a Presentation from GumGum

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:


Nishita Sant, Computer Vision Scientist at GumGum, presents the "Introduction to Creating a Vision Solution in the Cloud" tutorial at the May 2018 Embedded Vision Summit.

A growing number of applications utilize cloud computing for execution of computer vision algorithms. In this presentation, Sant introduces the basics of creating a cloud-based vision service, based on GumGum's experience developing and deploying a computer vision-based service for enterprises. Sant explores the architecture of a cloud-based computer vision solution in three parts: an API, computer vision modules (housing both algorithm and server), and computer vision features (complex pipelines built with modules).

Execution in the cloud requires the API to handle a continuous, but unpredictable, stream of data from multiple sources and task the appropriate computer vision modules with work. These modules consist of an AWS Simple Queue Service and an EC2 auto-scaling group and are built to handle both images and video. Sant discusses in detail how these modules optimally utilize instance hardware for executing a computer vision algorithm. Further, she discusses GumGum's method of inter-process communication, which allows for the creation of complex computer vision pipelines that require several modules to be linked. Sant also addresses cost and run-time tradeoffs between GPU and CPU instances.