Bookmark and Share

"The Vision Acceleration API Landscape: Options and Trade-offs," a Presentation from the Khronos Group

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:


Neil Trevett, President of the Khronos Group and Vice President at NVIDIA, presents the "Vision Acceleration API Landscape: Options and Trade-offs" tutorial at the May 2017 Embedded Vision Summit.

The landscape of APIs for accelerating vision and neural network software using specialized processors continues to rapidly evolve. Many industry-standard APIs, such as OpenCL and OpenVX, are being upgraded to increasingly focus on deep learning, and the industry is rapidly adopting the new generation of low-level, explicit GPU APIs, such as Vulkan, that tightly integrate graphics and compute. Some of these APIs, like OpenVX and OpenCV, are vision-specific, while others, like OpenCL and Vulkan, are general-purpose. Some, like CUDA and TensorRT, are vendor-specific, while others are open standards that any supplier can adopt. Which ones should you use for your project? Trevett's presentation sorts out the options and helps you make an optimum selection for your particular design situation.