Bookmark and Share

"Even Faster CNNs: Exploring the New Class of Winograd Algorithms," a Presentation from Arm

Register or sign in to access the Embedded Vision Academy's free technical training content.

The training materials provided by the Embedded Vision Academy are offered free of charge to everyone. All we ask in return is that you register, and tell us a little about yourself so that we can understand a bit about our audience. As detailed in our Privacy Policy, we will not share your registration information, nor contact you, except with your consent.

Registration is free and takes less than one minute. Click here to register, and get full access to the Embedded Vision Academy's unique technical training content.

If you've already registered, click here to sign in.

See a sample of this page's content below:


Gian Marco Iodice, Senior Software Engineer in the Machine Learning Group at Arm, presents the "Even Faster CNNs: Exploring the New Class of Winograd Algorithms" tutorial at the May 2018 Embedded Vision Summit.

Over the past decade, deep learning networks have revolutionized the task of classification and recognition in a broad area of applications. Deeper and more accurate networks have been proposed every year and more recent developments have shown how these workloads can be implemented on modern low-power embedded platforms. This presentation discusses a recently introduced class of algorithms to reduce the arithmetic complexity of convolution layers with small filter sizes. After an introduction to the latest optimizations techniques for the most common solutions such as GEMM, the talk dives deeply into the design of Winograd algorithms, analyzing the complexity and the performance achieved for convolutional neural networks.