
Harnessing Parallel Processing
to Get from Algorithms to Embedded Vision

Michael Tusch

CEO, Apical

www.apical.co.uk

1

Embedded vision application

• Want this to work on an embedded device, not a PC

• Want this to work on every pixel

• Want to implement complex video processing

2

The challenge

How do we go

With

• High resolution and high frame rates

• Efficient computation

• Low power

3

from this to this

?

RTL: Ultimate parallelism

4

Apical ISP core

Customer firmware

based on

Apical reference

AE/AWB/AF code

Low-level API

E
x
te

rn
a

l
D

D
R

 S
D

R
A

M

Control I/F

Up to 16-bit RAW

10-bit RGB

10-bit YUV422

Top Level

ISP/sensor

control deliverable

interrupt

mCU/CPU

3A and iris

control

Apical API

iridix (DRC)

Pre-Compander

Sensor

programming

SPI/I2C

Apical API

I2C

Parallel Port

D
D

R
 c

o
n

tr
o

lle
r

PLLs

Sensor module

Lens Shading Correction

3x3 Color matrix

Sharpening

Input Port

AWB

AF

Gamma LUT

White Balance correction

AE

Statistics Unit

Black Level

Defect Pixel Correction

Sinter (spacial NR)

Gamma

Gamma

temper (temporal NR)

SPI

Demosaic

(Color interpolation)

RGB -> YUV

444 / 422

Dither

Crop

C
o

n
fig

u
ra

tio
n

 s
p

a
c
e

Example: Image Signal Processor (ISP)

• Hundreds of operations per pixel

• All processing done in gates (Verilog/VHDL)

• Fully parallel

• Dedicated fast memory

• Up to 500 Megapixel/sec

• Low power

RTL is good but…

• Costly: silicon area devoted just to this function

• Inflexible: once chip is designed, functionality cannot be changed

• Takes a long time to develop and verify

5

Embedded software is attractive but…

• Serial computation (“one instruction per cycle”)

– Is slow, even on multi-GHz processors

– Consumes too much power

– Requires big compromises

• Need to look for parallelization wherever possible

– Limited by hardware accelerator resources

– And skills of designers!

6

Example accelerators

7

Accelerator Comment

ARM Neon SIMD extensions to ARM instruction set are
readily available

TI iMX (e.g. OMAP4) Powerful SIMD accelerator but access not
typically provided to third parties

GPU Highly parallel accelerator originally
designed for graphics now redesigned for
general computation

Simple example:
pixel luminance calculation

uint8_t *p_in_rgb=p_rgm_img+y*width*3;

uint8_t *p_out_lum=p_lum+y*width;

for(x=0;x<width;++x) // 1 loop counting op

{

uint8_t r,g,b,l;

r=p_in_rgb[0]; // 1 load

g=p_in_rgb[1]; // 1 load

b=p_in_rgb[2]; // 1 load

l=(uint8_t)(((r*77)+(g*150)+(b*29))>>8); // 3 muls, 2
adds, 1 shift

p_out_lum[x]=l; // 1 store

p_in_rgb+=3; // 1 add

++p_out_lum; // 1 add

}

8

Luminance = 0.299 * Red + 0.587 * Green + 0.114 * Blue

13 operations
per pixel

Neon optimization

R G B R G B R G B R G B R G B R

9

R 8 bit registers

128 bit registers

3.8 operations per pixel
So code should speed up by more than 3x

But we don’t see this
--limited by access to fast memory (cache)

10

Cache reloading is always a bottleneck

Image
memory

(slow)
Cache
(fast)

Instructions

More complex example:
blur

11

• for(y=0;y<height;++y)

• {

• uint8_t *p_in_lum_m1=p_lum+max(y-1,0)*width;

• uint8_t *p_in_lum=p_lum+y*width;

• uint8_t *p_in_lum_p1=p_lum+min(y,height-1)*width;

• uint8_t *p_out_lum=p_in_lum;

• for(x=0;x<width;++x)

• {

• uint8_t l00,l01,l02;

• uint8_t l10,l11,l12;

• uint8_t l20,l21,l22;

• uint8_t l;

• l00=p_in_lum_m1[x=0?0:x-1];

• l01=p_in_lum_m1[x];

• l02=p_in_lum_m1[x+1==height?x:x+1];

• l10=p_in_lum[x=0?0:x-1];

• l11=p_in_lum[x];

• l12=p_in_lum[x+1==height?x:x+1];

• l20=p_in_lum_p1[x=0?0:x-1];

• l21=p_in_lum_p1[x];

• l22=p_in_lum_p1[x+1==height?x:x+1];

• l= l00+ 2*l01+ l02+

• 2*l10+ 4*l11+2*l12)+

• l20+ 2*l21+ l22;

• p_out_lum[x]=l; // 1 store

• }

• }

Each line looks like it is read 3x but
from cache only need 1 read –good!

But, we have register spillage:

Embedded processor normally has only
12 registers available at one time

Spillage adds extra load/store ops: bad!

Need to consider breaking this loop
into smaller loops

e.g. separate 2D filter into 1D filters

Results

• We should see 300% acceleration – in reality we get 30%

• Processing operations are not the bottleneck

• Memory management and dataflow are

12

Summary

• Hardware accelerators have the potential to increase operations/cycle by 10-100x

• Very important for embedded programming

• Optimization has to be planned at the algorithm stage

• Optimization in these key areas:

13

Processor
operations

Memory
usage

Memory
bandwidth

One bottleneck is enough to kill performance!

Outlook

• Typical computer vision/image processing algorithms combine hundreds of filters with
intermediate data management

• Requires great skill and patience to optimize

– Even to judge how much optimization is done

• Need better compilers which can genuinely exploit algorithm parallelization and fast memory
management

14

