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Embedded vision application 

 

• Want  this to work on an embedded device, not a PC 

 

• Want  this to work on every pixel 

 

• Want  to implement complex video processing 
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The challenge 

How do we go 

 

 

 

 

 

 

 

 

 

 

With 

• High resolution and high frame rates 

• Efficient computation 

• Low power  
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from this to this 

? 



RTL: Ultimate parallelism 
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Example: Image Signal Processor (ISP) 
 
• Hundreds of operations per pixel 

 
• All processing done in gates (Verilog/VHDL) 

 
• Fully parallel 

 
• Dedicated fast memory 

 
• Up to 500 Megapixel/sec 

 
• Low power 



RTL is good but… 

• Costly: silicon area devoted just to this function 

 

• Inflexible: once chip is designed, functionality cannot be changed 

 

• Takes a long time to develop and verify 
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Embedded software is attractive but… 

• Serial computation (“one instruction per cycle”) 

– Is slow, even on multi-GHz processors 

– Consumes too much power 

– Requires big compromises 

 

 

• Need to look for parallelization wherever possible 

– Limited by hardware accelerator resources 

– And skills of designers! 
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Example accelerators 
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Accelerator Comment 

ARM Neon SIMD extensions to ARM instruction set are 
readily available  

TI iMX (e.g. OMAP4) Powerful SIMD accelerator but access not 
typically provided to third parties 

GPU  Highly parallel accelerator originally 
designed for graphics now redesigned for 
general computation 



Simple example:  
pixel luminance calculation 

uint8_t *p_in_rgb=p_rgm_img+y*width*3; 

uint8_t *p_out_lum=p_lum+y*width; 

for(x=0;x<width;++x) // 1 loop counting op 

{ 

uint8_t r,g,b,l; 

r=p_in_rgb[0]; // 1 load 

g=p_in_rgb[1]; // 1 load 

b=p_in_rgb[2]; // 1 load 

l=(uint8_t)(((r*77)+(g*150)+(b*29))>>8); // 3 muls, 2 
adds, 1 shift 

p_out_lum[x]=l; // 1 store 

p_in_rgb+=3; // 1 add 

++p_out_lum; // 1 add 

} 

8 

Luminance = 0.299 * Red + 0.587 * Green + 0.114 * Blue 

13 operations 
per pixel 



Neon optimization 

R G B R G B R G B R G B R G B R 
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R 8 bit registers 

128 bit registers 

3.8 operations per pixel 
So code should speed up by more than 3x 



But we don’t see this 
--limited by access to fast memory (cache) 

10 

Cache reloading is always a bottleneck 

Image 
memory 

(slow) 
Cache 
(fast) 

Instructions 



More complex example: 
blur 
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• for(y=0;y<height;++y) 

• { 

• uint8_t *p_in_lum_m1=p_lum+max(y-1,0)*width; 

• uint8_t *p_in_lum=p_lum+y*width; 

• uint8_t *p_in_lum_p1=p_lum+min(y,height-1)*width; 

• uint8_t *p_out_lum=p_in_lum; 

• for(x=0;x<width;++x) 

• { 

• uint8_t l00,l01,l02; 

• uint8_t l10,l11,l12; 

• uint8_t l20,l21,l22; 

• uint8_t l; 

• l00=p_in_lum_m1[x=0?0:x-1]; 

• l01=p_in_lum_m1[x]; 

• l02=p_in_lum_m1[x+1==height?x:x+1]; 

• l10=p_in_lum[x=0?0:x-1]; 

• l11=p_in_lum[x]; 

• l12=p_in_lum[x+1==height?x:x+1]; 

• l20=p_in_lum_p1[x=0?0:x-1]; 

• l21=p_in_lum_p1[x]; 

• l22=p_in_lum_p1[x+1==height?x:x+1]; 

• l= l00+ 2*l01+ l02+ 

• 2*l10+ 4*l11+2*l12)+ 

• l20+ 2*l21+ l22; 

• p_out_lum[x]=l; // 1 store 

• } 

• } 

Each line looks like it is read 3x but 
from cache only need 1 read –good! 
 
 
But, we have register spillage: 
 
Embedded processor normally has only 
12 registers available at one time 
 
Spillage adds extra load/store ops: bad! 
 
Need to consider breaking this loop 
into smaller loops 
 
e.g. separate 2D filter into 1D filters 
 
 



Results 

• We should see 300% acceleration – in reality we get 30% 

 

• Processing operations are not the bottleneck 

 

• Memory management and dataflow are 
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Summary 

• Hardware accelerators have the potential to increase operations/cycle by 10-100x 

 

• Very important for embedded programming 

 

• Optimization has to be planned  at the algorithm stage  

 

• Optimization in these key areas: 
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Processor 
operations 

Memory  
usage 

Memory  
bandwidth 

One bottleneck is enough to kill performance! 



Outlook 

• Typical computer vision/image processing algorithms combine hundreds of  filters with 
intermediate data management 

 

• Requires great skill and patience to optimize 

– Even to judge how much optimization is done 

 

• Need better compilers which can genuinely exploit algorithm parallelization and fast memory 
management 
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