
| © 2012 Aptina Imaging Corporation 1

© 2012 Aptina Imaging Corporation. All rights reserved. Products are warranted only to meet Aptina’s production data sheet specifications. Information, products, and/or
specifications are subject to change without notice. All information is provided on an “AS IS” basis without warranties of any kind. Dates are estimates only. Drawings not to
scale. Aptina and the Aptina logo are trademarks of Aptina Imaging Corporation. All other trademarks are the property of their respective owners.

Exposing the Android Camera Stack

Balwinder Kaur, Principal Software Architect

Joe Rickson, Principal Software Engineer

The San Francisco Android User Group

8.28.2012

| © 2012 Aptina Imaging Corporation 2

Agenda
•  Camera APIs

‣  Overview of android.hardware.Camera

‣  What’s new in Jelly Bean ?

‣  Prominent Camera Use Cases

•  Android Media Framework – Camera
‣  Native Camera service

‣  What’s new in Jelly Bean ?

‣  Media Subsystem Interactions

•  It’s all about the Camera hardware !
‣  Camera Hardware Abstraction Layer

‣  Camera Device Driver

‣  Camera Hardware Architecture

•  Future Trends

•  Q&A

| © 2012 Aptina Imaging Corporation 3

Section I
Android Camera APIs

| © 2012 Aptina Imaging Corporation 4

Overview of android.hardware.Camera

6 Classes

•  Camera

•  Camera.CameraInfo

•  Camera.Parameters

•  Camera.Size

•  Camera.Face

•  Camera.Area

8 Callback Interfaces

•  Camera.AutoFocusCallback

•  Camera.ErrorCallback

•  Camera.FaceDetectionListener

•  Camera.OnZoomChangeListener

•  Camera.PictureCallback

•  Camera.PreviewCallback

•  Camera.ShutterCallback

•  Camera.AutoFocusMoveCallback

| © 2012 Aptina Imaging Corporation 5

Camera class
Contains all the methods for the Camera Lifecycle

•  Open & Release

•  Access to the Camera Controls

•  Preview

‣  Direct Live Preview to the display or a texture

‣  Get Preview Frame in a Callback

•  Capture

‣  Callbacks: Shutter, JPEG, RAW, “Postview”

•  Lock & Unlock

•  Actions: startAutoFocus, startSmoothZoom & startFaceDetection

| © 2012 Aptina Imaging Corporation 6

Camera.Parameters

Class for Camera Controls
①  Mandatory Feature Set

‣  getSupportedPreviewSizes + set/get

②  Optional Feature Set

‣  isVideoStabilizationSupported + set/get

③  Custom Feature Set

‣  Camera.Parameters class provides a “dumb” pipe to the hardware
for custom controls

‣  set (“your_param_string”, value); get(“your__param_string”);

Auto White Balance, Scene Modes, Focus Modes, Preview Sizes, Picture Sizes,
Thumbnail Sizes, Preview Format, Picture Format, Anti-Banding

| © 2012 Aptina Imaging Corporation 7

… the rest of the Camera Classes
•  Camera.CameraInfo

‣  For each camera, front or back facing, orientation of the camera
image

•  Camera.Size

‣  width and height of the image

•  Camera.Face

‣  face-id, co-ordinates for left eye, right eye, mouth, outer bounds of
the face

•  Camera.Area

‣  Rectangular bounds with a weight

‣  Metering Regions for 3A : Auto Focus, Auto White Balance, Auto
Exposure

| © 2012 Aptina Imaging Corporation 8

What’s new in Jelly Bean ?

APIs

•  Camera.AutoFocusMoveCallback

‣  FOCUS_MODE_CONTINUOUS_PICTURE and
FOCUS_MODE_CONTINUOUS_VIDEO allows you to listen for
changes to the auto focus movement – starting & stopping

•  android.media.MediaActionSound

‣  Play an appropriate camera operation sound when
implementing a custom still or video recording mechanism, or
when implementing some other camera-like function in your
application.

| © 2012 Aptina Imaging Corporation 9

What’s new in Jelly Bean ?

New System Camera Application

‣  Source code has two apps

•  packages/apps/Camera

•  packages/apps/LegacyCamera

‣  Support for swipe gesture been added.

‣  Flick to the left at any time, and you'll be able to scroll through
all the photos you've taken. From there, you can crop, rotate
or share, just like in the gallery app.

‣  Swipe upwards to discard unwanted photos

‣  Live Preview feed is still running to take still pictures

| © 2012 Aptina Imaging Corporation 10

Android 4.0 Camera Features
Feature	 Pla)orm	

Feature	
with	 API	

In-‐built	
Camera	
Applica8on	 Code	

Proprietary	
Solu8on	

API	
Level	

Face	 Detec8on	 ✔	 14	

Face	 Recogni8on	 ✔	 14	

Panoramic	 S8tch	 ✔	 14	

Video	 Snapshot	 ✔	 14	

AE	 	 &	 AWB	 Lock	 ✔	 14	

Con8nuous	 Focus	 Mode	 ✔	 14	
Region	 Of	 Interest	 	
(AE,	 AWB	 and	 AF)	

✔	 14	

Zero	 ShuOer	 Lag*	 14	

Video	 Stabiliza8on	 ✔	 15	

Live	 Effects	 on	 Images	 /	 Video**	
	

✔	
	

14	

AE : Auto Exposure AWB : Auto White Balance AF : Auto Focus

* There is no API for ZSL. It is a hardware dependent feature.
** android.media.Effect

| © 2012 Aptina Imaging Corporation 11

Prominent Camera Use Cases
•  Main Use Cases

‣  Live Preview of Camera Stream

•  Live Preview + copy of the Frame returned to the application

‣  Capture a frame

‣  Video Recording of a Camera Stream

•  Secondary Use Cases

‣  Configuring the Camera

‣  Receiving more than an image back . e.g. face detection data

‣  VideoSnapshot

‣  Event Callbacks: Shutter Clicked, AutoFocus Achieved

•  Note: to use Existing Camera Apps use standard Android Intents

 http://developer.android.com/guide/topics/media/camera.html

| © 2012 Aptina Imaging Corporation 12

DEMO

•  Preview

•  Capture

•  Save Picture

| © 2012 Aptina Imaging Corporation 13

Switching to Video Mode
To quickly switch from still to video recording mode, use these
steps:

•  Open a Camera and startPreview as for still mode

•  Call unlock() to allow the media process to access the
camera.

•  Pass the camera to MediaRecorder.setCamera(Camera).

•  Follow MediaRecorder instructions on recording

•  When finished recording, call reconnect() to re-acquire and
re-lock the camera.

•  If desired, restart preview and take more photos or videos.

•  Call stopPreview() and release()

| © 2012 Aptina Imaging Corporation 14

Face Detection
•  Use Camera.Parameters to see if Face Detection is Supported

Camera.Parameters p = mCamera.getParameters();

if (p.getMaxNumDetectedFaces() >0) {

 mCamera.startFaceDetection(); }

•  Face Information is available through the Camera.FaceDetectionListener

void onFaceDetection (Face[] faces, Camera camera) {

 // Overlay Green, White or your favorite color squares

 // on the Preview Surface

}

Some of the ISPs will overlay

these on the Preview stream directly

| © 2012 Aptina Imaging Corporation 15

Other Applications
•  ZXing: Open Source Library for 1D/2D image processing library

‣  uses the Camera.setOneShotPreviewCallback

•  Processing the live Preview Stream w/o a display

‣  In API level 11 (HoneyComb), Camera.setPreviewTexture() call was introduced.
With this call, Camera Streams can be processed w/o necessarily needing a
display

‣  GPU Processing: Need an OpenGL context. SurfaceTexture.updateTexImage
will update SurfaceTexture to the latest preview frame from the camera

‣  CPU Processing: Don’t call updateTexImage. The SurfaceTexture will simply
discard all data passed into it by the camera. Set up preview callbacks using
setPreviewCallback, and use that data (typically in a YUV format) for CPU
processing. Less efficient than GPU processing. No knowledge of OpenGL is
needed. OpenCV sample code uses this pattern a lot.

‣  Google IO 2011 : http://www.youtube.com/watch?v=OxzucwjFEEs#t=16m30

| © 2012 Aptina Imaging Corporation 16

Section II
Android Media Framework - Camera

| © 2012 Aptina Imaging Corporation 17

High Level Architecture

| © 2012 Aptina Imaging Corporation 18

Source: Android Anatomy and Physiology, Google IO 2008

Android High Level Architecture

| © 2012 Aptina Imaging Corporation 19

Source: Android Anatomy and Physiology, Google IO 2008

Hardware Abstraction Layer

Hardware Abstraction Layer

Camera

| © 2012 Aptina Imaging Corporation 20

Camera Subsystem

Application

Application framework

Camera Service

Camera HAL
Implementation

Camera Device Driver

Hardware Independent

Hardware Dependent

Camera Hardware

HAL = Hardware Abstraction Layer

| © 2012 Aptina Imaging Corporation 21

Process View

App App App

Binder IPC
ICamera

Media server

Camera Service

Back Facing
Camera Hardware

Object

Front Facing
Camera Hardware

Object

Kernel Driver Kernel Driver

System Call System Call

Binder IPC
ISurface Surfaceflinger

| © 2012 Aptina Imaging Corporation 22

Inside the Camera App

Media server

Camera Service
libcameraservice.so

Camera HAL
implementation

Application Code

android framework code Camera.java

JNI

android_hardware_Camera.cpp

| © 2012 Aptina Imaging Corporation 23

JNI Layer

| © 2012 Aptina Imaging Corporation 24

JNI Layer

Media server

Camera Service
libcameraservice.so

Camera HAL
implementation

Application Code

android framework code Camera.java

JNI

android_hardware_Camera.cpp

| © 2012 Aptina Imaging Corporation 25

android_hardware_Camera

•  Creates a persistent context for callbacks from native
code to Java (JNICameraContext)

•  Holds references to the Java Camera, Face and Area
objects.

•  If a Copy of the Preview Frame is requested by the app,
then the copy from native to java buffers is done here.

•  Allocates Memory from the Java memory heap for JPEG
images.

| © 2012 Aptina Imaging Corporation 26

Camera Service

| © 2012 Aptina Imaging Corporation 27

Camera Service

Media server

Camera Service
libcameraservice.so

Camera HAL
implementation

Application Code

android framework code Camera.java

JNI

android_hardware_Camera.cpp

| © 2012 Aptina Imaging Corporation 28

Camera Service

•  Resource Manager for the Camera Hardware Asset

•  Runs in the media server process

•  It is a shared library libcameraservice.so

•  Main Functions:

Permission check android.permission.CAMERA

Ensures only one Client connects to a Camera Hardware Object

Ensures each Process connects to a single Camera Hardware Object

Redirects callbacks back to the app layer

Accessed over IBinder Interface

Number of Cameras Available

CameraInfo Details

| © 2012 Aptina Imaging Corporation 29

Android Open Source Project (AOSP) Structure
Android 4.0 (ICS)

•  Android Framework
‣  Java: frameworks/base/core/java/android/hardware

‣  JNI: frameworks/base/core/jni

•  Camera Service

‣  frameworks/base/services/camera/libcameraservice/

•  IBinder Interfaces

‣  frameworks/base/include/camera/ICamera.h

•  IBinder Implementation
‣  frameworks/base/libs/camera/ICamera.cpp etc.

•  Camera HAL Interface
‣  frameworks/base/services/camera/libcameraservice/CameraHardwareInterface.h

•  Camera HAL

‣  hardware/<vendor>/camera (typically)

| © 2012 Aptina Imaging Corporation 30

What’s changed in Jelly Bean ?
Android Open Source Project (AOSP) Structure

•  Android Framework
‣  Java: frameworks/base/core/java/android/hardware

‣  JNI: frameworks/base/core/jni

•  Camera Service

‣  frameworks/av/services/camera/libcameraservice/

•  IBinder Interfaces

‣  frameworks/av/include/camera/ICamera.h etc.

•  IBinder Implementation
‣  frameworks/av/camera/ICamera.cpp etc.

•  Camera HAL Interface
‣  frameworks/av/services/camera/libcameraservice/CameraHardwareInterface.h

•  Camera HAL

‣  hardware/<vendor>/camera (typically)

| © 2012 Aptina Imaging Corporation 31

Section III
Its all about the Camera Hardware !

| © 2012 Aptina Imaging Corporation 32

Camera Hardware Abstraction Layer

Review of a Typical Implementation

| © 2012 Aptina Imaging Corporation 33

Camera Stack – Camera HAL

Camera
Hardware Abstraction Layer

 (HAL)

Vendor Specific HAL
Implementation

Camera Driver

Image Sensor

Image Sensor
Processer

SurfaceFlinger /
Overlay Buffers User

Kernel

Hardware

Upper Camera Stack …

| © 2012 Aptina Imaging Corporation 34

Android CameraHAL Library
•  The Camera Hardware Abstraction Layer (HAL) is a library that is

specific to the camera hardware platform

‣  Written by hardware vendors (Qualcomm, TI, others)

•  CameraHAL maps Android Camera Service calls to driver functions

‣  Android Froyo uses CameraHardwareInterface.h wrapper

‣  Ice Cream Sandwich (ICS) and above use camera.h

•  CameraHAL low level interface communicates with the kernel level
driver

‣  It can support interfaces including Video for Linux 2 (V4L2) or OpenMax
(OMX)

‣  Communicates with the driver through file I/O calls (open, close, input/
output controls (IOCTL), etc)

| © 2012 Aptina Imaging Corporation 35

Sample CameraHAL Functional Diagram

CameraHAL

Memory Manager

Camera Driver
/dev/videoX

Camera Service I/F

Display Surface
Manager

Event
Notification
Manager

Camera Manager

Kernel

User

Source: TI OMAP4
 git.omapzoom.org

| © 2012 Aptina Imaging Corporation 36

CameraHAL Block Diagram Discussion (1)
•  Parts of the previous block diagram are hardware vendor specific

‣  May be different for each vendor and target platform

•  CameraHAL

‣  Initialization – initialize the CameraHAL block and the target device driver

‣  Camera Services interface – Handle each Camera Service request, dispatch
requests to the appropriate functional block

‣  Camera State machine – maintain the camera state through different API calls
(e.g., preview, capture, recording, focus enable, etc).

•  Memory Manager

‣  Cameras are memory intensive devices

‣  On request, allocate buffers for preview, capture and other functions

•  Display Surface Manager

‣  Controls preview and video displaying - helps to coordinate with the camera
manager block

| © 2012 Aptina Imaging Corporation 37

CameraHAL Block Diagram Discussion (2)
•  Display Surface Manager (cont)

‣  Communicates to the display when a frame is ready for preview

‣  Signals to the Camera Manager when the image buffer can be re-queued

•  Event Notification Manager

‣  Supported callbacks include notify, data and timestamp

•  Notify – call on camera error, shutter, focus, zoom events or raw image notify event

•  Timestamp – call on video frame event

•  Data – call on preview, postview, compressed image, and other capture events

‣  Call backs types are separated at the Camera Service level

•  Camera Manager
‣  Handle camera activities

•  Setting parameters

•  Preview and snapshot callback

‣  Interface with kernel driver

| © 2012 Aptina Imaging Corporation 38

CameraHAL Preview Discussion

•  The following slides discuss the preview use case

•  Preview – displaying the camera image on the device display
in real time

•  The startPreview application call initiates image preview

‣  A single application level call results in a chain of CameraHAL and
driver events

•  Preview continues until the stopPreview() application call

‣  During preview, no application interaction unless a preview
callback is registered

| © 2012 Aptina Imaging Corporation 39

Preview Start Up
Sequence Diagram (V4L2)

Application CameraHAL Kernel Driver
/dev/videoX

Camera Server

start preview start preview
VIDIOC_S_FMT

VIDIOC_REQBUFS

VIDIOC_QBUF

MMAP

VIDIOC_QUERYBUFS

VIDIOC_STREAMON

For each buffer

For each buffer

return

| © 2012 Aptina Imaging Corporation 40

Preview Operation
Sequence Diagram (V4L2)

Application CameraHAL Kernel Driver
/dev/videoX

Camera Server

start preview start preview

Preview image received
signal

VIDIOC_DQBUF

VIDIOC_QBUF

Send image to
surface/Display

If preview callback
enabled, copy image
and notify Camera
Server

Preview
Notify

| © 2012 Aptina Imaging Corporation 41

Camera Preview Interaction with
the Display Subsystem

•  Matching the timing of 2 events

‣  Preview frames arrive asynchronously from the camera

‣  The display subsystem refreshes the display at regular intervals

‣  Potential mismatch between these 2 system

•  Sending the preview image to the display subsystem

‣  The preview frame is removed from the V4L2 queue of buffers

‣  The frame is sent to the display subsystem

•  The frame memory is shared by the display subsystem

•  Or the frame is copied to a buffer for display subsystem use

‣  The preview frame may be copied to a user space buffer if preview
callback is enabled

‣  The frame is returned to the V4L2 queue of buffers when done

| © 2012 Aptina Imaging Corporation 42

Camera Device Driver

| © 2012 Aptina Imaging Corporation 43

Camera Stack – Camera Driver

Camera
Hardware Abstraction Layer

 (HAL)

Vendor Specific HAL
Implementation

Camera Driver

Image Sensor

Image Sensor
Processer

SurfaceFlinger /
Overlay Buffers User

Kernel

Hardware

Upper Camera Stack …

| © 2012 Aptina Imaging Corporation 44

Android Kernel Camera Driver

•  The kernel driver presents a standard interface for
different types of camera hardware

‣  Camera hardware specific attributes are handled by the low
level kernel driver

‣  Image Sensor Processor (ISP) vs. SOC (smart) sensor -
differences are handled at the driver level

•  For Android, Video for Linux 2 (V4L2) is used in many
implementations

‣  V4L2 has been in existence for many years

‣  OpenMax (OMX) is also used for a low level driver interface by
some vendors.

| © 2012 Aptina Imaging Corporation 45

V4L2 Kernel Driver Block Diagram

V4L2 Driver Interface
-  IOCTL support/dispatch
-  V4L2 driver infrastructure

Controlling Interface
-  Support for different device configurations
-  Control device flow

Buffer/Memory Management
-  Memory allocation (if needed)
-  Buffer management
-  Buffer queue/de-queue

Camera HW Management
-  One of these blocks for each camera
type
-  Device discovery
-  Device initialization
-  Power management
-  Set/get device specific parameter
-  Enable/disable image streaming

| © 2012 Aptina Imaging Corporation 46

Android Linux Kernel Functionality
•  Support for multiple camera types

‣  Camera specific code is localized to one file

‣  Compile time option to add other cameras (one driver can support
many different camera hardware)

‣  More cameras means longer start up times since a camera’s
initialization can be time consuming

•  The driver manages the underlying hardware topology (e.g.,
ISP + sensor, smart sensor)

•  For two or more cameras, the V4L2 driver creates additional
device nodes

‣  Devices show up as /dev/video0 (primary), /dev/video1
(secondary), …

| © 2012 Aptina Imaging Corporation 47

V4L2 Kernel Driver Resources
•  Memory

‣  Memory can be either driver-allocated or user-provided

‣  The image transfers from the camera to memory through hardware Direct Memory Access
(DMA)

‣  Hardware memory management may be used to avoid contiguous memory requirement

•  Interrupts

‣  Camera ports support for interrupts on events such as frame start, finish, focus events,
etc.

•  Camera Control: I2C/SPI

‣  I2C (Inter-Integrated Control) is used for writing or reading camera registers

‣  SPI (Serial Peripheral Interface) is a faster alternative to I2C

•  Control Signals/GPIO

‣  All controlled by the low level driver

•  Power
‣  Sensor power management is critical to embedded device operation

‣  Sensors support standby mode where settings are maintained while power usage is reduced

| © 2012 Aptina Imaging Corporation 48

V4L2 Driver Buffer Management
•  One or more buffers are supported

•  User buffers or kernel-allocated buffers
are supported

•  Buffers are treated the same for preview,
capture, video (output resolution does not
matter)

•  Buffers are queued to a circular list

•  Buffer filling starts when the V4L2
Stream_On command is executed

•  Once filled, the CameraHAL de-queues a
buffer, processes the buffer, then re-
queues the buffer

•  The Stream_Off command causes all
buffer to be released

Buff_0

Buff_1

Buff_2 Buff_3

Buff_x

| © 2012 Aptina Imaging Corporation 49

Typical V4L2 Preview Sequence (1)

•  V4L2 preview start up sequence is given below

V4L2 Call Driver Events Hardware Events
VIDIOC_S_FMT – set format Set image format and size Set both resolution and output

pixel format

VIDIOC_G_PARM – get
parameter

Get a camera driver or hardware
parameter

Read camera parameter

VIDIOC_S_PARM – set
parameter

Set a camera driver or hardware
parameter

Write camera parameter

VIDIOC_CROPCAP – get
cropping capabilities

Return camera cropping
capabilities

None

VIDIOC_S_CROP – set
cropping

Set cropping rectangle Set camera cropping rectangle

VIDIOC_REQBUFS – request
camera buffer

Request buffer support from the
driver (user vs. kernel)

None

Loop: VIDIOC_QUERYBUF
– query buffer caps

For kernel allocated buffers, return
buffer characteristics

None

 V4L2_MMAP – map buffers
to user space

For kernel allocated buffers,
memory map to user space

None

| © 2012 Aptina Imaging Corporation 50

Typical V4L2 Preview Sequence (2)

•  V4L2 preview start up sequence (cont)

•  V4L preview shut-down sequence

V4L2 Call Driver Events Hardware Events
Loop: VIDIOC_QBUF –
queue buffers

Queue buffers in the circular queue none

VIDIOC_STREAM_ON – start
streaming

Start image capture state Enable image output

V4L2 Call Driver Events Hardware Events
VIDIOC_STREAM_OFF – stop
streaming

Stop streaming, deallocate
buffer

Disable image output

| © 2012 Aptina Imaging Corporation 51

V4L2 Driver Directions

•  Other Topics

‣  V4L2 Media Controller Architecture

•  Exposing the hardware image processor to the calling application

•  Allows for greater programmer control

•  Supported only on open source architectures

‣  Proprietary ISP software moves to user space

•  Many ISP providers wish to hide their hardware

•  Moving ISP code to user space handles this (avoid kernel open source
issues)

•  Driver source code location:

‣  {kernel sources}/drivers/media/video

| © 2012 Aptina Imaging Corporation 52

Camera Hardware Overview

| © 2012 Aptina Imaging Corporation 53

Camera Stack – Camera Hardware

Camera
Hardware Abstraction Layer

 (HAL)

Vendor Specific HAL
Implementation

Camera Driver

Image Sensor

Image Sensor
Processer

SurfaceFlinger /
Overlay Buffers User

Kernel

Hardware

Upper Camera Stack …

| © 2012 Aptina Imaging Corporation 54

Camera Hardware Introduction

•  Types of Image Sensor Hardware

‣  Raw or Bayer Sensor

•  Outputs a Bayer image

•  Limited or no Image processing capability

•  Requires host ISP

•  Simple controls from the host system

‣  Smart or System On a Chip (SOC) Sensor

•  Outputs a processed image

•  Image processing occurs on-chip (built in ISP)

•  No host ISP required

•  Complex controls from the host system

| © 2012 Aptina Imaging Corporation 55

Bayer Sensor Discussion

•  Outputs a Bayer (unprocessed) image

•  Used with internal or external ISP

‣  Internal ISP – System Processor and ISP bundled together

‣  External ISP – External companion chip

•  Sensor controls include exposure time and analog/digital gains

•  ISP controls high level parameters (exposure, white balance, lens
shading, noise filtering, resize/zoom, others)

 Image
Sensor

Host Processor/
ISP

 Image
Sensor

Host Processor Companion
Chip

Host Internal ISP External ISP + Host

| © 2012 Aptina Imaging Corporation 56

Bayer Sensor Block Diagram
•  Example - MT9M032 – 1.6MP Image Sensor

•  Uses an Electronic Rolling Shutter for image readout

‣  One line of the pixel array read at time

•  Pixels are output from the sensor one pixel at a time

‣  8/10/12/14 bits per pixel

| © 2012 Aptina Imaging Corporation 57

SOC Sensor Discussion

•  Outputs a processed image such as YUV, RGB or JPEG

•  Does not require a host ISP – ISP is built into the sensor

•  Sensor controls include exposure, white balance, lens shading,
noise filtering, resize/zoom, others

 Image
Sensor/ISP Host Processor

 SOC + Host

RGB565 Pattern Ycbcr Pattern

| © 2012 Aptina Imaging Corporation 58

SOC Sensor Block Diagram
•  Example - MT9M131 – 1.3 MP Image Sensor

•  Also uses an ERS for image readout

‣  One line of the pixel array read at time

•  Pixels are output from the sensor one pixel at a time

‣  8/16 bits per pixel

| © 2012 Aptina Imaging Corporation 59

Preview at the Camera Level

•  Several methods used at the hardware level to go from
a full sized image to a preview sized image

‣  Skipping – skipping 1 or more rows and columns to reduce
image size (good for power savings)

‣  Binning – combining several pixels into one pixel

‣  Scaling – reduce the image size using hardware scaling
algorithms (best for image quality)

| © 2012 Aptina Imaging Corporation 60

A Peek into the Future

| © 2012 Aptina Imaging Corporation 61

Camera Application Trends

•  Android Applications – memory limitation 16MB ~ 24MB

‣  Higher pixel sizes and Bursty modes put a strain on the system

•  Computer Vision Applications go mainstream

‣  APIs on Object Tracking, Gesture Recognition become more
common place

•  Computation Photography application

‣  Developers get fine grained control of flash and camera

| © 2012 Aptina Imaging Corporation 62

Camera Hardware Trends
•  Back Side Illumination(BSI) vs. Front Side Illumination(FSI)

‣  BSI can add up to 30% more light gathering capability

•  Smaller Pixels

‣  Constant push to reduce pixel and sensor package sizes

•  Faster data output rates, higher clock speeds

‣  1080p30, 1080p60

‣  Serial data interfaces enable increased sensor output speeds

•  High Dynamic Range

‣  Ability to capture larger exposure range

•  3D Imaging

‣  Use of 2 cameras to generate a 3D image

| © 2012 Aptina Imaging Corporation 63

Q&A

| © 2012 Aptina Imaging Corporation 64

References

•  http://developer.android.com/

•  http://www.codeaurora.org

•  http://omappedia.org

•  http://source.android.com

•  http://stackoverflow.com/questions/10775942/
android-sdk-get-raw-preview-camera-image-without-
displaying-it

•  http://www.cjontechnology.com/blog/?p=14

| © 2012 Aptina Imaging Corporation 66

Backup Slides

| © 2012 Aptina Imaging Corporation 67

Interaction with the Media Subsystem

•  ICameraRecordingProxy and ICameraRecordingProxyListener
were introduced in Android 4.0

•  Allow apps to use the camera subsystem while the
MediaRecorder is recording the video frames.

•  ICameraRecordingProxy is a proxy of Icamera

‣  startRecording

‣  stopRecording

‣  releaseRecordingFrame

•  ICameraRecordingProxyListener is an interface that allows
the recorder to receive video frames during recording.

‣  dataCallbackTimestamp

| © 2012 Aptina Imaging Corporation 68

More on Camera Service (ICS)
•  Android.mk file

‣  frameworks/base/media/mediaserver/Android.mk
LOCAL_SHARED_LIBRARIES := \
 libaudioflinger \

 libcameraservice \
 libmediaplayerservice \
 libutils \
 libbinder

•  Gets instantiated as along with other components of the media
server

 AudioFlinger::instantiate();

 MediaPlayerService::instantiate();

 CameraService::instantiate();

 AudioPolicyService::instantiate();

